

COMUNE DI CALVISANO

Committente: "Comune di Calvisano" - Piazza Caduti, 4 - 25012 - Calvisano (BS)

AGGIORNAMENTO DELLA COMPONENTE GEOLOGICA, IDROGEOLOGICA E SISMICA DEL PGT COMUNALE (art. 57 L.R. 12/05 e smi - DGR IX/2616/11)

RELAZIONE GEOLOGICA GENERALE

Geol. Alessandro Schiepatti

Geol. Fabio Fenaroli

Pisogne, gennaio 2017

Prima stesura versione: rev.00

INDICE

1.	PREMESSA4					
2.	RICE	CRCA STORICA E BIBLIOGRAFICA	8			
	2.1.	Il Progetto Geomol	8			
	2.1.1.Inquadramento geografico.					
	2.1.2.	Inquadramento geologico	9			
	2.1.3.	Studi precedenti	11			
	2.1.4.	Caratterizzazione delle sorgenti sismogenetiche	12			
	2.1.4.	1. Le faglie capaci in Pianura Padana	12			
	2.1.4.	2. Nuovi dati e loro utilizzo	13			
	2.1.4.	3. Assetto sismotettonico e sorgenti sismogenetiche della Pianura Padana central	e 13			
	2.1.4.	4. Sorgenti Sismogenetiche del Sudalpino	14			
	2.1.4.	5. Sorgenti Sismogenetiche dell'Appennino settentrionale	15			
	2.2.	Il Comune di Calvisano nel "Progetto Geomol"	17			
	2.2.1.	Calvisano: mappa gravimetrica passo alto	18			
	2.2.2.	Calvisano: Potenziale Geotermico	19			
	2.2.3.	Calvisano: Riserve Idriche Strategiche	21			
	2.3.	Il Piano di Gestione Rischio Alluvioni (PGRA)	21			
3.	INQU	JADRAMENTO DELLA ZONA D'INDAGINE	26			
	3.1.	Localizzazione geografica	26			
	3.2.	Inquadramento meteo-climatico	26			
	3.3.	Inquadramento geologico-geomorfologico generale	28			
	3.3.1.	Interpretazione sezioni geologiche	30			
	3.4.	Idrografia ed idrogeologia	31			
	3.5.	Andamento della superficie piezometrica	34			
	3.6.	Vulnerabilità della falda	34			
	3.7.	Aggiornamento "Carta Geologica e geomorfologica" e aggiornamento	"Carta			
		Idrogeologica e di vulnerabilità della falda"	35			
4.	PERI	COLOSITÀ SISMICA	36			
	4.1.	Introduzione	36			
	4.2.	Evoluzione normativa sismica recente e zona sismica di appartenenza	37			
	4.3.	Storia sismica del Comune di Calvisano	38			

	4.4.	Pericolosità Sismica Locale)
	4.5.	Aggiornamento Carta della Pericolosità Sismica Locale (Tav. 03)	,
5.	FAS	E DI SINTESI / VALUTAZIONE44	ŀ
	5.1.	Vincoli esistenti e aggiornamento Carta dei Vincoli	ŀ
	5.1.1	. Aree di salvaguardia delle risorse idriche	-
	5.2.	Aggiornamento Carta di Sintesi	,
6.	FAS	E DI PROPOSTA - AGGIORNAMENTO CARTA DELLA FATTIBILI	ΤÀ
	GEC	DLOGICA PER LE AZIONI DI PIANO49)
	6.1.	Premessa	,
	6.2.	Aggiornamento Carta della Fattibilità Geologica per le azioni di Piano	,
	6.3.	Norme Geologiche di Piano)
7.	CON	SIDERAZIONI CONCLUSIVE55	;
ALI	LEGAT	TO 1: INDAGINI GEOGNOSTICHE E GEOFISICHE PREGRESSE.	
ALI	LEGAT	FO 2: STRATIGRAFIE POZZI (DA "TANGRAM" DATABASE PER POZZI).	
ALI	LEGAT	RACCOLTA REPORT ILLUSTRATIVI DELLA CAMPAGNA DI INDAGINI GEOFISCH	E.

ELABORATI CARTOGRAFICI

Tav. 01: "Carta geologica - geomorfologica del territorio comunale" (scala 1:10.000); aggiornamento 2017.

Tav. 02: "Sezioni geologiche" (scale varie 1:10.000); aggiornamento 2017.

<u>Tav.03: "Carta Idrogeologica e della vulnerabilità della falda del territorio comunale (scala 1:10.000);</u> aggiornamento 2017.

Tav. 04: "Carta della pericolosità sismica locale di 1º livello del territorio comunale (scala 1:10.000)"; aggiornamento 2017.

Tav. 05: "Carta dei Vincoli di natura geologica del territorio comunale (scala 1:10.000)"; aggiornamento 2017

Tav.06: "Carta di Sintesi del territorio comunale (scala 1:10.000)"; aggiornamento 2017.

Tav. 07: "Carta della Fattibilità Geologica per le azioni di Piano (Foglio 07a: Calvisano Nord e foglio 07b: Calvisano Sud - scala 1:5.000)"; aggiornamento 2017.

1. PREMESSA

Su incarico dell'Amministrazione Comunale (determina del Responsabile Area Tecnica - settore edilizia privata n. 21 del 22/12/2015 e n 24 del 04/08/2016) di Calvisano (BS) è stato realizzato il presente aggiornamento della componente geologica, idrogeologica e sismica del PGT comunale, aggiornamento effettuato nell'ambito della variante generale del PGT in questione e realizzato ai sensi della D.G.R. IX/2616/11 "Aggiornamento dei "Criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio, in attuazione dell'art. 57, comma 1, della l.r. 11 marzo 2005, n. 12, approvati con d.g.r. 27 dicembre 2015, n. 8/1566 e successivamente modificati con d.g.r. 28 maggio 2008, n. 8/7374", pubblicato sul BURL n. 50 Serie ordinaria del 15 dicembre 2012".

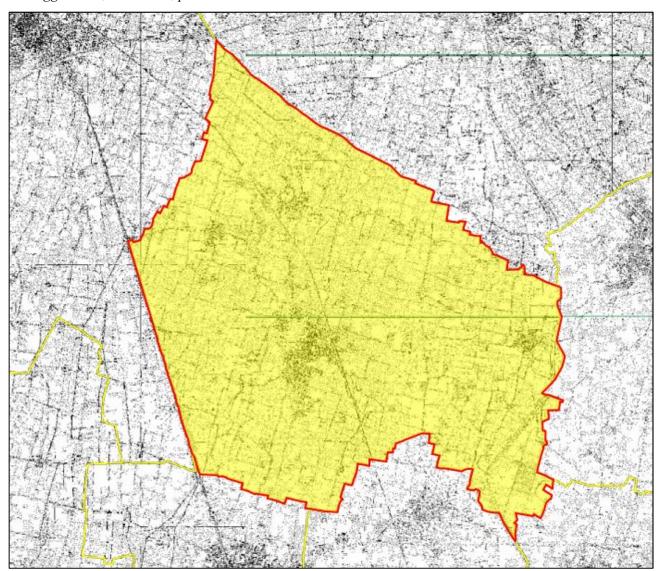


Fig. 1: ubicazione territorio comunale di Calvisano (estratto CTR scala 1:50.000; Geoportale Provincia di Brescia).

Attualmente il Comune di Calvisano dispone della seguente documentazione di natura geologica, realizzata nell'ambito della prima stesura del Piano di Governo del Territorio comunale e più precisamente trattasi di:

1) GEOSYS Studio Associato (Giugno 2008) - "Studio Geologico del territorio comunale" di Calvisano ai sensi della D.G.R. 8/1566/2005 "Criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del Piano di Governo del Territorio, in attuazione dell'art. 57, comma 1, della L.R. 11.03.2005, n. 12".

Nel frattempo sia a livello regionale che a livello di normativa sovraordinata sono sopravvenute tutta una serie di nuovi indirizzi normativi inerenti la difesa del suolo, le problematiche di rischio idrogeologico / idraulico e le problematiche di rischio sismico nonché una serie di studi settoriali che hanno aggiornato lo stato delle conoscenze relativamente al rischio sismico ed al rischio idrogeologico / idraulico anche per l'area in esame. Nello specifico si tratta più precisamente:

- del sopraggiungere a livello regionale della D.G.R. 8/7374/08 prima e della D.G.R. IX/2616/11 poi che hanno ridefinito alcuni passaggi in merito alla stesura della componente geologica, idrogeologica e sismica sia per quanto riguarda approfondimenti d'indagine inerenti la problematica sismica (adeguamento dell'Allegato 5 alle disposizioni delle NTC08) sia per gli aspetti di normativa sovraordinata (modalità di presentazione delle perimetrazioni / riperimetrazioni delle aree "PAI");
- dell'introduzione delle misure di salvaguardia per le aree a rischio alluvionale cosi come individuate nel PGRA (Piano di Gestione Rischio Alluvione) del bacino idrografico del Fiume Po in ottemperanza della Direttiva 2007/60/CE recepita con D.Lgs 23 Febbraio 2010, n. 49 "Attuazione della direttiva 2007/60/CE relativa alla valutazione e alla gestione dei rischi di alluvioni" e la relativa variante PAI, tutt'ora in fase di realizzazione con recepimento delle indicazioni del PGRA;
- dell'entrata in vigore della L.R. 15 marzo 2016, n. 4 "Revisione della normativa regionale in materia di difesa del suolo, di prevenzione e mitigazione del rischio idrogeologico e di gestione dei corsi d'acqua" che ha introdotto il concetto dell'invarianza idraulica delle trasformazioni della destinazione d'uso del suolo.
- dell'Aggiornamento delle zone sismiche in Regione Lombardia (D.G.R. X/2129/2014), la cui classificazione è entrata definitivamente in vigore il 06 Aprile 2016 in accompagnamento della D.G.R. X/5001/2016 "Approvazione delle linee di indirizzo e coordinamento per l'esercizio delle funzioni trasferite ai Comuni in materia sismica (art. 3, comma 1, e art. 13, comma 1, della L.R. 33/2015)";
- della realizzazione, nell'ambito di un Programma Europeo di Cooperazione Territoriale "Spazio Alpino" 2007-2013, IV Call, Priorità 3 "Ambiente e prevenzione dei rischi", del Progetto Geomol "Assessing subsurface potentials of the Alpine Foreland Basins for sustainable planing and use of natural resources" che ha consentito la realizzazione di un Modello Geologico 3D e dei geopotenziali della Pianura Padana centrale (vedi capitolo 2);

• dell'"Acquisizione di dati geologici nell'Oltrepò Mantovano utili alla valutazione della pericolosità sismica per le aree colpite dalla sequenza del maggio 2012" realizzato a cura del CNR -IDPA Sezione di Milano e dalla Direzione Territorio, Urbanistica e Difesa del Suolo della Regione Lombardia e che ha fornito utili indicazioni per discriminare la potenziale presenza del fenomeno della liquefazione dei terreni (vedi capitolo 4 e Allegato 3) nelle aree interessate dallo studio sopracitato.

Pertanto per ottemperare correttamente a quanto precedentemente indicato e stante la situazione del quadro geologico del territorio comunale di Calvisano, si è proceduto in una prima fase alla:

- 1. Raccolta di studi e indagini pregresse a disposizione dell'Ufficio Tecnico Comunale di Calvisano, mediante la cernita e la selezione delle tipologie di indagini geognostiche e geofisiche presenti nelle relazioni geologiche e geotecniche realizzate nell'ambito della progettazione di opere pubbliche e/o di interventi di edilizia privata, di seguito raccolte e catalogate nell'Allegato 1: "Indagini geognostiche e geofisiche pregresse" oltre che puntualmente riportate nella Tav. 01: "Carta geologica e geomorfologica del territorio comunale (scala 1:10.000)".
- 2. Raccolta e selezione delle informazioni relative ai numerosi pozzi privati (ubicazione, stratigrafie, ecc.) presenti sul territorio comunale e disponibili dalla consultazione del "database Tangram" dell'Università Milano Bicocca (Dipartimento di Scienze dell'Ambiente e del Territorio) e del IDPA CNR (Istituto per la Dinamica dei Processi Ambientali) di Milano, raccolti e catalogati nell'Allegato 2: "Stratigrafie pozzi "da Tangram database per pozzi". Inoltre il dato di profondità relativo alla stratigrafia dei pozzi individuati ha consentito la stesura di quattro sezioni stratigrafiche (due sezioni orientate E-W e due sezioni orientate N-S) rivelatesi di fondamentale importanza ai fini della valutazione della geologia dell'area in esame e riportate nella Tav. 02: "Sezioni geologiche (scale varie)".
- 3. Verifica per l'areale in esame della documentazione presente nello studio "Modello geologico 3D e geopotenziali della Pianura Padana centrale (Area Pilota Italiana del Progetto GeoMol)", rivelatosi particolarmente significativo soprattutto per l'approfondimento degli aspetti relativi alla caratterizzazione sismogenetica delle faglie capaci della Pianura Padana.

I dati così raccolti hanno permesso di poter procedere ad un primo aggiornamento delle cartografie di inquadramento e di analisi del territorio comunale nonché alla stesura ex novo di sezioni geologiche di dettaglio dell'areale del territorio comunale permettendo la stesura della:

- > <u>Tav. 01: "Carta geologica geomorfologica del territorio comunale" (scala 1:10.000);</u> aggiornamento 2017.
- Tav. 02: "Sezioni geologiche" (scale varie 1:10.000); aggiornamento 2017.
- > <u>Tav.03: "Carta Idrogeologica e della vulnerabilità della falda del territorio comunale (scala 1:10.000)</u>; aggiornamento 2017.

A seguito di questa prima fase di attività si è dato corso alla realizzazione di una:

- 1. Campagna di indagini geofisiche di tipo MASW con la realizzazione di 18 stendimenti sismici ubicati sul territorio comunale di Calvisano, concentrando la loro localizzazione lungo il perimetro (o dove possibile, internamento allo stesso) dei principali centri abitati. Tale campagna ha permesso di implementare il "dato sismico" d'ingresso, derivante dalle informazioni dello studio geologico esistente ed è stato finalizzato oltre che all'aggiornamento / adeguamento della Carta della Pericolosità Sismica Locale del precedente studio geologico sopracitato anche all'implementazione del dato puntuale relativo al II° livello dell'Allegato 5 della D.G.R. IX/2616/2011 mediante la verifica del Fattore di Amplificazione (Fa) sitospecifico. Tutti i report analitici relativi agli stendimenti realizzati sono stati raccolti e catalogati nell'Allegato 3: "Raccolta report illustrativi della campagna di indagini geofisiche", all'interno del quale si trovano anche le corrispondenze lungo lo stendimento d'indagine con il rispetto delle categorie di sottosuolo delle NTC08.
- 2. Valutazione delle problematiche di rischio idrogeologico ed idraulico cosi come riportate nell'ambito del PGRA (Piano di Gestione Rischio Alluvioni) con particolare attenzione alle indicazioni relative all' ARS RL25 "Ghedi, Calvisano Torrente Garza" mentre a livello di prescrizioni geologiche comunali si sono introdotte le indicazioni derivanti dalla Legge Regionale 15 marzo 2016, n. 4 "Revisione della normativa regionale in materia di difesa del suolo, di prevenzione e mitigazione del rischio idrogeologico e di gestione dei corsi d'acqua" in merito all'invarianza idraulica delle trasformazioni urbanistiche

In conseguenza di quanto sopraddetto si è quindi proceduto all'aggiornamento ed alla stesura della:

- > <u>Tav. 04: "Carta della pericolosità sismica locale di I° livello del territorio comunale (scala 1:10.000)"</u>; aggiornamento 2017.
- > <u>Tav. 05: "Carta dei Vincoli di natura geologica del territorio comunale (scala 1:10.000)"</u>; aggiornamento 2017.
- > <u>Tav.06: "Carta di Sintesi del territorio comunale (scala 1:10.000)"</u>; aggiornamento 2017.
- Tav. 07: "Carta della Fattibilità Geologica per le azioni di Piano (Foglio 07a: Calvisano Nord e foglio 07b: Calvisano Sud scala 1:5.000)"; aggiornamento 2017.
- Relazione Geologica Generale con aggiornamento delle Norme e prescrizioni geologiche di Piano.

2. RICERCA STORICA E BIBLIOGRAFICA

Nell'ambito della fase di ricerca storica e bibliografica realizzata per la stesura del presente lavoro una particolare attenzione è stata rivolta alla disamina dei contenuti dei seguenti studi:

- Rapporto del "Modello geologico 3D e geopotenziali della Pianura Padana centrale" realizzato da ISPRA, Regione Lombardia e Regione Emilia Romagna nell'ambito del progetto europeo "Progetto GeoMol".
- PGRA (Piano Gestione Rischio Alluvioni) con particolare attenzione all' ARS RL25 "Ghedi,
 Calvisano Torrente Garza" e all'area Fiume Chiese nel tratto "Montichiari Calvisano Carpenedolo" (in quest'ultimo caso trattasi di conferma delle fasce fluviali attualmente presenti e vigenti
 dal 2001 anno di entrata in vigore del PAI).

2.1. Il Progetto Geomol

Avviato nel settembre 2012, il progetto ha visto la partecipazione di sei Stati europei e si è ufficialmente concluso il 30 giugno 2015.

L'obiettivo è stata la valutazione dei **geopotenziali** nei bacini sedimentari perialpini che offrono potenzialità significative sia per la produzione di energia geotermica sia per l'accumulo in sottosuolo dell'energia prodotta da altre fonti rinnovabili (eoliche e solari) che necessitano di "serbatoi" di stoccaggio per il loro andamento fortemente irregolare; così come per lo stoccaggio del gas naturale, il cui approvvigionamento, in genere da fornitori terzi, è soggetto a fluttuazioni di prezzo e a incertezze legate alle vicende internazionali poco sincronizzate con la domanda di consumo.

Per l'Italia si poneva anche la questione del deposito in sottosuolo dell'anidride carbonica (CO₂) derivante dai grandi processi industriali e che dovrebbe essere immagazzinata per evitare l'immissione in atmosfera. Focalizzando l'attenzione sui due principali bacini sedimentari che circondano le Alpi – il Bacino della Molassa a nord e il Bacino del Po a sud, nell'ambito di questo progetto sono state individuate 5 aree pilota. L'area pilota italiana, nella quale ricade anche il Comune di Calvisano, è ubicata nel settore centro-orientale della Pianura Padana, tra l'area di Brescia (Lombardia) a nord e quella di Modena (Emilia-Romagna) a sud. Quest'area ha un'estensione di 5480 km² di cui circa 3800 km² in Lombardia, circa 1000 km² in Emilia-Romagna e circa 680 km² in Veneto e vista la sua posizione nell'ambito del bacino padano è stato possibile studiare sia le strutture sepolte alpine, a vergenza generalmente meridionale, che quelle di pertinenza appenninica, a vergenza settentrionale, dato che queste si fronteggiano nel sottosuolo a non molti chilometri di distanza fra loro.

2.1.1. Inquadramento geografico

L'area pilota comprende tutta la porzione planiziale della Provincia di Brescia tra i fiumi Oglio (ad ovest) e Mincio (verso est) ed è solcata inoltre dai fiumi Mella e Chiese oltre che da alcuni corsi d'acqua minori e da una fitta rete di canali artificiali, rogge ("seriole") e cavi, realizzata per l'irrigazione e la bonifica agricola. A partire dal margine alpino, dove ha sede la città di Brescia, l'area comprende una serie di rilievi isolati poco pronunciati, denominati "Colli dei Longobardi" (Ciliverghe, Castenedolo e Capriano del Colle-Monte Netto) che delimitano a sud e a est il bacino di Brescia. A sud di questi rilievi si apre la grande pianura irrigua bresciana. Da segnalare, nel settore nord-occidentale, la terminazione dell'anfiteatro glaciale del Lago d'Iseo mentre nel settore orientale, oltre il Fiume Chiese, troviamo l'anfiteatro morenico del Garda, l'apparato glaciale più esteso del margine meridionale delle Alpi.

La parte centrale dell'area (Bassa Pianura Bresciana, settore orientale della pianura Cremonese e Pianura Mantovana) è attraversata dal basso corso dei fiumi Oglio e Mincio ed è caratterizzata da prevalente attività agricola.

Il settore meridionale dell'Area Pilota si sviluppa a sud del Fiume Po, che la attraversa con andamento grossomodo ovest-est, e comprende la pianura di pertinenza appenninica, in cui scorrono i fiumi e torrenti affluenti di destra del Po (Taro, Parma, Enza, Secchia e Panaro).

2.1.2. Inquadramento geologico

L'evoluzione geologica dell'Area Pilota è correlabile con i suoi caratteri morfologici solo per gli avvenimenti della storia geologica più recente. Lo studio del sottosuolo realizzato dal Progetto GeoMol considera successioni di età Triassica risalenti a circa 250-200 milioni di anni fa (Ma) e quindi la descrizione dell'evoluzione geologica del Bacino Padano deve necessariamente partire da allora.

Durante il **Triassico Medio** (Anisico-Ladinico) l'area è caratterizzata da articolate piattaforme carbonatiche di ambiente tropicale; successivamente, un importante episodio di sedimentazione di mare basso ed emersione con presenza di paleo suoli, depositi continentali ed evaporiti, dà origine a un orizzonte litologico che assumerà grande importanza durante la successiva evoluzione strutturale.

Nel **tardo Triassico** si reimposta l'ambiente di piattaforma carbonatica con la Dolomia Principale, unità litostratigrafica pressoché omogenea su un vastissimo areale che si rinviene oggi in affioramento dal Friuli occidentale a tutta la Lombardia. Questa piattaforma è interamente dolo mitizzata, caratteristica che limita sensibilmente la sua suscettività all'alterazione di tipo carsico.

Successivamente si depositano unità carbonatiche e silicee di ambiente progressivamente più profondo, ben stratificate, di età **Giurassico medio-superiore e Cretacico Inferiore** (Lumachella, Oolite di San Vigilio, Calcari a Posidonia, Formazione di Concesio, Rosso Ammonitico, Radiolariti, Calcari ad Aptici e Maiolica) la cui sommità (Top Maiolica) rappresenta un riflettore molto evidente nelle sezioni sismiche utilizzate nell'interpretazione del sottosuolo.

La sedimentazione delle **unità triassico superiori e giurassiche** è stata condizionata da un esteso fenomeno di *rifting*, assottigliamento crostale dovuto ad un regime tettonico distensivo, legato alla formazione del bacino oceanico Ligure-Piemontese, nel contesto più ampio della frammentazione di Pangea.

A partire dal **Giurassico Superiore**, le attuali Pianura Padana e Prealpi costituivano il margine passivo settentrionale della placca africana, segmentato da un serie di faglie dirette, grossomodo parallele tra loro e con andamento all'incirca meridiano nel contesto geografico attuale, che delimitavano zone di alto strutturale relativo caratterizzate da sedimentazione condensata (spessori ridotti di sedimento per un dato intervallo temporale) e zone di bacino, con fondale più profondo e sedimentazione più espansa.

All'inizio del **Cretacico** (ca.145 Ma) prosegue l'annegamento totale del bacino, con la deposizione di calcari fini di mare profondo (Maiolica). Con questa unità si chiude il ciclo dei carbonati mesozoici legati al margine passivo africano. La successiva deposizione di sedimenti con un tenore terrigeno progressivamente dominante marca l'inizio dell'orogenesi alpina e registra la deposizione, sempre in un contesto di mare profondo, di sedimenti marnosi seguiti da unità torbiditiche (Flysch Lombardi, 90-70 Ma, e unità correlate, p.e. Scaglia).

Il **Paleogene**, nell'area di studio, è caratterizzato dalla disattivazione dei sistemi torbiditici e dalla deposizione di unità prevalentemente marnose (Scaglia e Gruppo delle Marne di Gallare) che, agendo come livello di scollamento tettonico preferenziale, condizioneranno l'assetto strutturale del bacino padano.

Nell' Eocene Medio (ca. 45 Ma) avviene la collisione continentale tra Africa ed Europa, seguita da un'intensa strutturazione della catena alpina, tra 30 e 15 Ma circa (Oligocene-Miocene). Da questo momento, le fasi tettoniche accompagnate dalla rotazione antioraria di Sardegna e Corsica, legata all'apertura del bacino oceanico Algerino-Provenzale ed alla conseguente strutturazione del prisma di accrezione appenninico. Così, mentre al margine settentrionale del bacino padano si deposita durante il Miocene il potente cuneo clastico sinorogenico della Gonfolite, caratterizzato da materiali anche molto grossolani derivanti dall'erosione della catena alpina in rapido sollevamento, nel resto del bacino si depositano potenti successioni marnoso-argillose, con significativi episodi clastici grossolani, importanti per lo sviluppo dei geopotenziali del bacino padano. Nel frattempo, la continua migrazione delle falde appenniniche verso nord produce la sovrapposizione di successioni di avanfossa (Macigno, Cervarola e Marnoso-Arenacea) giungendo nel Pliocene Inferiore (ca. 4 Ma) ad interferire con le strutture alpine e la conseguente strutturazione del bacino padano nella sua configurazione attuale.

La successiva storia geologica **quaternaria** (da 2,5 Ma fino ad oggi) vede il progressivo colma mento del bacino pliocenico, da O verso E, con una successione sedimentaria complessivamente regressiva che porta alla formazione della Pianura Padana fino all'attuale linea di costa adriatica.

La successione quaternaria registra eventi tettonici e climatici, che permettono così di ricostruire con buon dettaglio l'evoluzione più recente dl bacino: le geometrie e le facies della successione quaternaria sono in parte controllate dalla crescita delle strutture sepolte di pertinenza sia alpina che appenninica, nonché a partire da circa 1 Ma, dall'alternanza dei cicli glaciali e interglaciali, unita al sollevamento isostatico in

particolare della catena alpina, fattori che condizionano significativamente la disponibilità di sedimenti provenienti dalle due catene in erosione.

2.1.3. Studi precedenti

Lo studio del sottosuolo padano trova la sua origine nell'esplorazione petrolifera avviata in modo sistematico da Agip negli anni '20. Nel secondo dopoguerra sono pubblicati i primi dati stratigrafici di sottosuolo (Perconig, 1956) e un primo schema stratigrafico-strutturale del bacino padano (AGIP, 1959). Collaborazioni sviluppate tra l'agenzia petrolifera italiana e i gruppi di ricerca scientifica portano nel decennio successivo solo ad un'unica significativa pubblicazione sulla natura tettonica di rilievi isolati della pianura padana (Desio, 1965), a modeste rielaborazioni degli schemi proposti nel 1959 (ENI, 1962-1971; Ruggieri, 1973) e all'integrazione di alcune informazioni di sottosuolo nei fogli di pianura della Carta Geologica d'Italia alla scala 1:100000.

La svolta nella conoscenza del bacino padano e nell'accessibilità delle informazioni arriva negli anni '70 con l'avvio dell'investigazione delle serie profonde nei carbonati mesozoici. La scoperta dell'importante giacimento di Malossa (Errico et al., 1979), seguita poi negli anni '80 da quella di Gaggiano (Bongiorni, 1987) e Villafortuna-Trecate (Bello & Fantoni, 2002) porta al progressivo abbandono di obiettivi strategici nelle serie plio-pleistoceniche padane e al rilascio progressivo di informazioni sulla struttura e la stratigrafia superficiale del sottosuolo padano (AGIP, 1972,1977, 1985).

Tra la fine degli anni '70 e l'inizio degli anni '80 uscirono pubblicazioni fondamentali tra cui si ricordano Cita et al. (1978), Rizzini & Dondi (1978,1979) e CNR (1983) sul Messiniano, Ricci Lucchi et al. (1982) sulla stratigrafia sequenziale del margine appenninico, Dondi et al. (1982 a-c) sulla stratigrafia regionale del sottosuolo, ma soprattutto la monografia di Pieri & Groppi (1981) lavoro esaustivo e completo di numerose sezioni geologiche sulla struttura del bacino padano riferita alla base del Pliocene.

Dopo queste importanti pubblicazioni, gli anni '80 proseguono con rielaborazioni sul tema da parte di Pieri (1983), Cassano et al. (1986) e Dondi & D'Andrea (1986) ma vedono soprattutto i lavori innovativi di Ori & Friend (1984), che riconoscono nel sottosuolo padano una nuova categoria di bacini sedimentari, i piggyback (o thrust-top) basins, e di Rossi & Rogledi (1988), i quali, identificando le fasi deformative appenniniche messiniane e plioceniche nel sottosuolo e lungo il margine appenninico, traducono la suddivisione litostratigrafica classica del bacino padano nelle moderne sequenze stratigrafiche che integrano nella loro definizione eventi tettonici, variazioni nella geometria del bacino e stili deposizionali.

Negli anni '90 si assiste allo sviluppo di due importanti programmi strategici a scala nazionale e regionale, che avranno un profondo impatto sulla conoscenza e lo studio del bacino padano. Da un lato il progetto CARG, la nuova cartografia geologica d'Italia a scala 1:50000; dall'altro sono promossi e sviluppati studi innovativi sugli acquiferi padani, ad opera di Regione Emilia-Romagna e Regione Lombardia in collaborazione con ENI che integrano dati stratigrafici di pozzi per acqua con dati geofisici provenienti

dall'esplorazione petrolifera. Entrambi questi programmi di ricerca hanno sviluppato un nuovo approccio allo studio del Quaternario in Pianura Padana (Di Dio et al., 1997 a,b; Di Dio, 1998) che non si limita alla geomorfologia e più in generale alla sola geologia di superficie, ma favorisce un'idea di stratigrafia del Quaternario che trova il suo naturale sviluppo nel sottosuolo. Da qui deriva l'uso e lo studio sistematico di sondaggi a carotaggio continuo e linee sismiche.

Lo studio interdisciplinare dei sondaggi eseguiti nell'ambito dello studio degli acquiferi lombardi, offre inoltre l'opportunità di ridefinire lo schema stratigrafico del Quaternario Padano, identificando per la prima volta l'inizio delle glaciazioni alpine (Muttoni et al., 2003) e caratterizzando la variazione spaziale dei sistemi deposizionali nel tempo in risposta alle variazioni eustatiche (Gianolla at al., 2010) o al sollevamento isostatico dell'edificio alpino (Scardia et al., 2006; 2012).

Ai numerosi studi sul Quaternario del sottosuolo padano si affianca, dalla fine degli anni '90, una quantità di lavori a scala regionale sull'evoluzione strutturale del bacino padano, non più aggiornata dopo Pieri & Groppi (1981). Con il lavoro di Fantoni et al. (1999) viene proposto il primo modello strutturale completo della Pianura Padana che riporta per la prima volta anche i principali lineamenti tettonici nella successione carbonatica mesozoica e in quella terrigena cenozoica. A questo modello, che sarà ripreso, ampliato e modificato più volte (Fantoni et al., 2001; 2003; 2004; Bello & Fantoni, 2002) segue la pubblicazione di sezioni geologiche regionali (Fantoni & Franciosi, 2008; 2009; 2010) che illustrano gli stili deformativi all'interno della successione carbonatica e terrigena, l'interazione nel sottosuolo tra le strutture appenniniche e quelle alpine, e la complessa evoluzione del bacino padano.

Con il nuovo millennio cresce inoltre l'attenzione verso l'evoluzione recente della Pianura Padana, con l'obiettivo di valutarne il grado di attività tettonica in una prospettiva di rischio sismico. Studi in questa direzione affrontano il problema da un punto di vista geomorfologico (Burrato et al., 2003; Pellegrini, 2003), archeosismologico (Galli, 2005), stratigrafico (Scardia et al., 2012), strutturale (Livio et al., 2009 a,b; 2014; Boccaletti et al., 2011; Bresciani & Perotti, 2014; Maesano et al., 2015a; Scardia et al., 2015). L'integrazione tra i dati stratigrafici e analisi delle deformazioni ha portato alle prime valutazione dei tassi di movimento delle faglie sepolte stimati, a seconda dell'intervallo di tempo o della struttura considerati, variabili tra 0.1 e 1 mm/anno.

2.1.4. Caratterizzazione delle sorgenti sismogenetiche

2.1.4.1. Le faglie capaci in Pianura Padana

Il termine faglia attiva viene spesso impropriamente utilizzato per indicare la capacità di una faglia di rompere la superficie del terreno; esso viene in pratica utilizzato al posto del termine faglia capace. Le faglie capaci fanno parte delle faglie attive, quindi l'uso estensivo del termine faglia attiva non è errato, ma una

maggiore diffusione dell'uso del termine faglia capace renderebbe più chiara, oltre che più corretta, la comunicazione inerente il tema del pericolo da fagliazione superficiale.

La Pianura Padana, sebbene non faccia parte delle regioni italiane a più alto potenziale sismico, non è esente dal pericolo di fagliazione superficiale. Essa è infatti interessata da strutture attive compressive sia appenniniche, a vergenza Nord-Est, che alpine, generalmente Sud-vergenti. Sovrascorrimenti pleistocenici, coperti da sedimenti della pianura, sono osservabili grazie alla densa rete di linee sismiche disponibili.

I dati di sismicità storica, seppure limitati all'ultimo millennio, testimoniano l'attività di tali strutture, raggiungendo intensità rilevanti: i terremoti storici di maggiore intensità sono quello del 778 a Treviso (intensità IX-X MCS), del 2 e 3 gennaio 1117 nel veronese (intensità IX MCS), del 25 dicembre 1222 nel basso bresciano (intensità IX MCS), del 25 febbraio 1695 (intensità X MCS) ad Asolo (TV) e del 7 giugno 1891 (intensità IX MCS) in Valle d'Illasi (VR).

2.1.4.2. Nuovi dati e loro utilizzo

I nuovi dati di geologia e geofisica del sottosuolo raccolti nell'ambito del progetto GeoMol hanno contribuito a migliorare la definizione dell'assetto sismotettonico del settore centrale della Pianura Padana, permettendo di studiare in dettaglio le geometrie delle faglie presenti, i loro rapporti geometrici e strutturali e, in alcuni casi, di definirne i tassi di attività a lungo termine. I dati forniti dal modello geologico 3D sono:

- Caratteri geometrici delle faglie modellate (azimuth, dip, estensione e profondità);
- Andamento dell'orizzonte fagliato più giovane (per le faglie) e relativa età;
- Andamento dell'orizzonte deformato più giovane (per le anticlinali) e relativa età.

2.1.4.3. Assetto sismotettonico e sorgenti sismogenetiche della Pianura Padana centrale

Questo settore di pianura è caratterizzato da un punto di vista strutturale dalla presenza nella parte nord dei fronti esterni della catena del Sudalpino e, nella parte sud, dei fronti esterni della catena dell'Appennino Settentrionale. Queste due catene si sono sviluppate a partire dal Cretacico nell'ambito della convergenza tra le placche Africana ed Europea e sono caratterizzate da vergenza contrapposta oltre che da differenti geometrie, tempi di attivazione e messa in posto degli elementi strutturali. La continua convergenza tra le placche Africana ed Europea si riflette nell'area centro padana in tassi di raccorciamento di circa 1 mm/a e nella sismicità storica e strumentale che ha caratterizzato questo settore di pianura. I fronti esterni delle due catene, sepolti al di sotto dei depositi plio-quaternari e non coincidenti con il limite morfologico della pianura, ospitano infatti le faglie responsabili di questi terremoti, inclusi quelli della sequenza sismica del 2012. A conferma del carattere compressivo della deformazione attiva, la maggior parte degli eventi sismici sono caratterizzati da meccanismi focali di tipo inverso o trascorrente e il campo di stress attivo mostra un'orientazione all'incirca N-S, diretta perpendicolarmente all'andamento medio dei fronti sepolti.

Al di sotto delle strutture compressive appartenenti alle due catene sono presenti dei sistemi di faglie di tipo diretto (Fig. 2); mentre le prime sono meglio descritte e studiate dal punto di vista sismo tettonico, in quanto più recenti e superficiali, le seconde sono state studiate solo di recente. Sono state estensivamente mappate nell'ambito del progetto Geomol e sono da considerare in prima approssimazione come strutture non più attive. Nonostante ciò, questi sistemi di faglie "ereditate" possono entrare in interazione con i sistemi compressivi e quindi avere un potenziale di riattivazione. Questo interesse nasce dall'osservazione della storia sismica della Pianura Padana che include terremoti che potrebbero essere stati generati da faglie non appartenenti ai sistemi compressivi neogenici come ad esempio il terremoto del 3 gennaio 1117 di M_w 6.7 del Veronese per il quale esistono diverse ipotesi riguardante la sorgente sismogenetica.

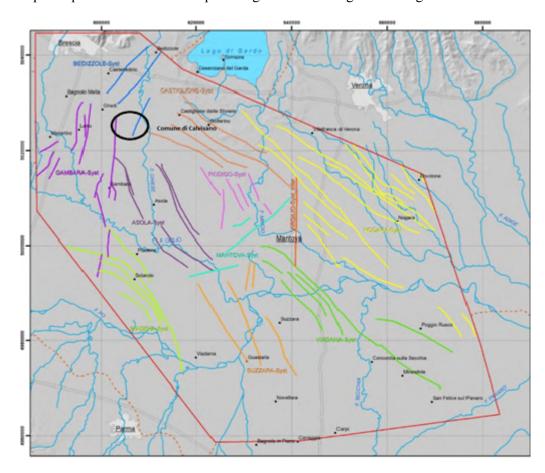


Fig. 2: Sistemi di faglie dirette definiti nell'Area Pilota italiana (da GeoMol) e ubicazione territorio comunale di Calvisano.

2.1.4.4. Sorgenti Sismogenetiche del Sudalpino

Queste sorgenti appartengono ai sistemi compressivi esterni del settore centrale del Sudalpino, presenti nel sottosuolo padano a nord del fiume Po, nella zona compresa tra i fiumi Adda e Mincio, e includono la porzione meridionale del Sistema delle Giudicarie. I fronti esterni del Sudalpino e il Sistema delle Giudicarie formano un ampio arco e hanno la zona di giunzione nel settore di pianura a sud del lago di Garda. I dati di sottosuolo disponibili mostrano che, proprio in questo settore sono presenti anche i sistemi di faglie dirette

ereditate, che localmente hanno andamento ortogonale ai fronti compressivi stessi e raggiungono profondità comparabili con quelle dei thrust (faglia inversa che sovrappone terreni più antiche su terreni più giovani associata a regime tettonici compressivi).

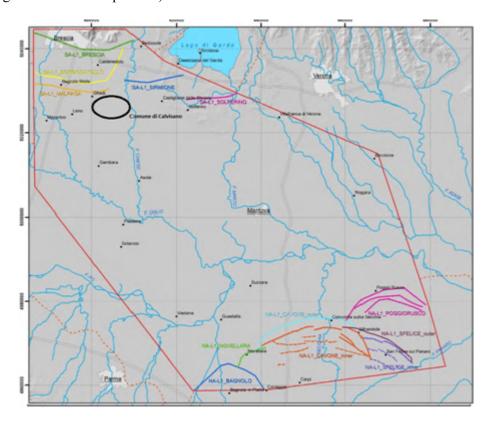


Fig. 3: Sistemi di Thrust con livello di scollamento L1 nell'Area Pilota Italiana (da GeoMol) e ubicazione territorio comunale di Calvisano.

2.1.4.5. Sorgenti Sismogenetiche dell'Appennino settentrionale

L'area studio del Progetto GeoMol include, nella sua porzione meridionale, le strutture sepolte più esterne della catena dell'Appennino Settentrionale, presenti nel settore di pianura a sud del Fiume Po. La ricostruzione strutturale ha permesso di ridefinire l'andamento geometrico delle sorgenti sismo genetiche appartenenti alla terminazione occidentale dell'Arco di Ferrara coincidenti con i thrust di tipo L1 di Bagnolo,Novellara e Cavone e di identificare una nuova sorgente sismogenetica, coincidente con il thrust di tipo L2 di Solarolo.

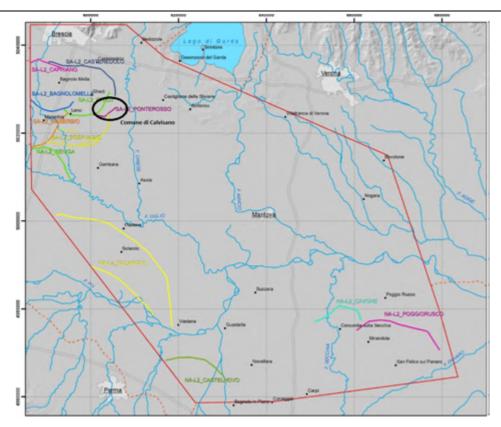


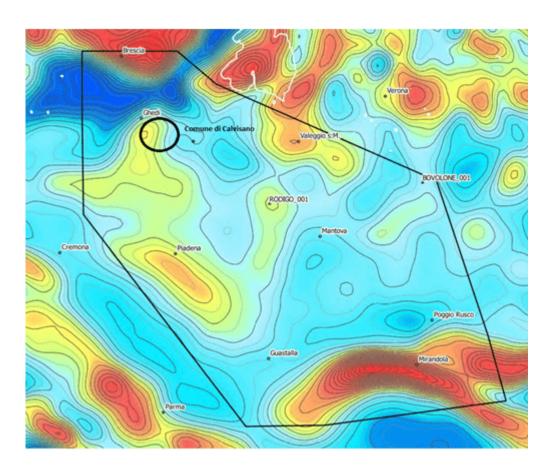
Fig. 4: Sistemi di Thrust con livello di scollamento L2 nell'Area Pilota italiana (da GeoMol) e ubicazione territorio comunale di Calvisano.

I Thrust sono stati classificati sulla base dei seguenti criteri:

- Appartenenti al Sudalpino (SA) o all'Appennino Settentrionale (NA)
- Posizione del livello di scollamento: L1 scollamento in TR-J, L2 scollamento in EO-OL
- Distinzione in thrust principali o secondari identificati da toponimi e numeri progressivi
- Caratterizzazione di splay o backthrust.

2.2. Il Comune di Calvisano nel "Progetto Geomol"

Oltre alle informazioni riportate precedentemente e che stanno ad indicare la presenza di faglie sismogenetiche / faglie capaci nel sottosuolo dell'area bresciana inserita nel progetto per il territorio comunale di Calvisano si hanno avuto dei riscontri anche in merito alla presenza di anomalie gravimetriche, a valutazioni del potenziale geotermico nonché in merito alla presenza di riserve idriche strategiche così come verrà indicato nei paragrafi seguenti.


Fig. 5: Area Pilota di studio n° 5 GeoMol.

2.2.1. Calvisano: mappa gravimetrica passo alto

La mappa gravimetrica passa alto delle Anomalie di Bouger è stata ricavata con un apposito filtro 2D con λ_0 = 40 km ed ordine 6. Allo scopo di meglio individuare le discontinuità gravimetriche, intese come zone con variazioni laterali di densità significative, è stato anche utilizzato, con vari azimuth di illuminazione, lo "shaded relief" (rilievo ombreggiato) della mappa filtrata e ne è stato calcolato il gradiente orizzontale. Nella mappa, nel settore tra Brescia e Calvisano, si evidenzia una marcata anomalia negativa dove sarebbero presenti i massimi spessori sedimentari al fronte dei thrust del Sudalpino. La parte centrale dell'area presenta alcune anomalie gravimetriche chiuse di bassa ampiezza e media lunghezza d'onda probabilmente causate da ispessimenti della copertura mio-plio-quaternaria. L'alto gravimetrico presso Ghedi-Calvisano individua la nota struttura compressiva del fronte avanzato sepolto del Sudalpino.

Fig. 6: Mappa gravimetrica passo alto delle Anomalie di Bouguer (da GeoMol) e ubicazione dell'alto gravitazionale di "Ghedi-Calvisano".

2.2.2. Calvisano: Potenziale Geotermico

È possibile seguire tramite le mappe elaborate con GeoMol, e di seguito riportate, il potenziale geotermico dell'Area Pilota che, soprattutto per quanto riguarda l'area italiana, è quello legato alla geotermia a bassa entalpia con temperature comprese tra i 25°C e i 90°C, adatte ad utilizzi di teleriscaldamento o termale (balneazione, wellness, SPA).

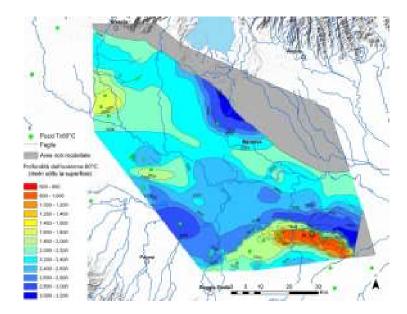


Fig. 7: Mappa della profondità (in metri) dell'isoterma 60°C sotto la superficie.

Nel comune di Calvisano l'isoterma dei 60°C passa alla profondità di 1600-2000 m sotto la superficie. Molto interessante anche la mappa seguente che mostra la distribuzione delle temperature alla profondità di 500 m.

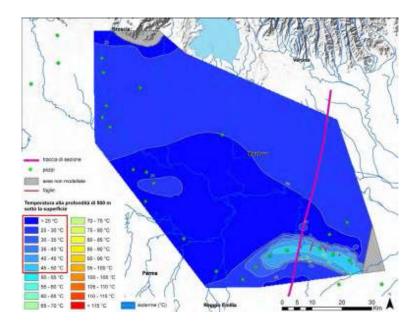


Fig. 8: Mappa della distribuzione delle temperature alla profondità di 500 metri.

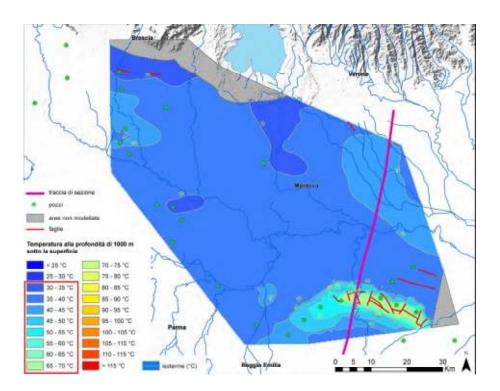


Fig. 9: Mappa della distribuzione delle temperature alla profondità di 1.000 metri.

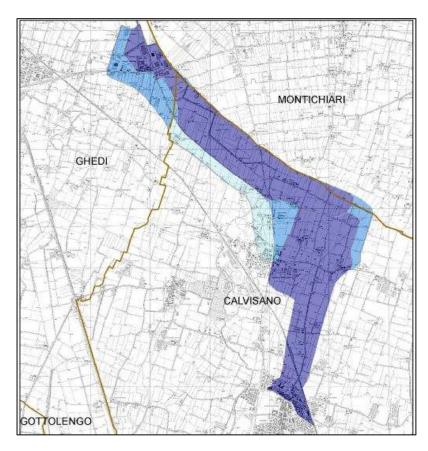
2.2.3. Calvisano: Riserve Idriche Strategiche

Per quanto riguarda il Geopotenziale rappresentato dalle *Riserve Idriche Strategiche* il Comune di Calvisano si colloca geograficamente al margine settentrionale dell'Area Pilota Italiana dove il consistente accumulo di sedimenti grossolani (ghiaie e sabbie) in corrispondenza dello sbocco delle valli e costituiti in prevalenza da depositi di delta sottomarino, ha permesso il successivo spiazzamento delle acque marine connate da parte dell'acqua dolce proveniente dall'area di ricarica alpina, favorito sia dall'elevato gradiente idraulico che dalla significativa permeabilità di questi corpi sedimentari. Tuttavia, per passare dal concetto di "riserva idrica" a quello di "risorsa idrica", sarà ancora necessario valutare i parametri idrogeologici di questi corpi acquiferi profondi (permeabilità, modalità di ricarica, chimismo delle acque), per verificare la fattibilità e l'economicità del loro utilizzo ai fini idropotabili.

2.3. Il Piano di Gestione Rischio Alluvioni (PGRA)

Con la "Direttiva 2007/60/CE del Parlamento Europeo e del Consiglio del 23 ottobre 2007 relativa alla valutazione e alla gestione dei rischi di alluvioni" così come recepita nell'ordinamento nazionale dal D. Lgs. 23 febbraio 2010, n. 49 "Attuazione della direttiva 2007/60/CE relativa alla valutazione e alla gestione dei rischi di alluvioni", le Autorità di Bacino nazionali (come l'Autorità di Bacino del Fiume Po) e regionali hanno iniziato e ormai completato l'iter per la stesura dei rispettivi Piani di Gestione del Rischio Alluvioni sui territori di propria competenza.

Nell'ambito dei lavori di stesura del Piano di Gestione Rischio Alluvione (PGRA) del bacino idrografico del Fiume Po, Autorità di Bacino del Fiume Po e Regione Lombardia hanno svolto un'analisi approfondita per l'individuazione delle aree alluvionabili definite di rischio significativo (ARS), in quanto caratterizzate da elevate portate di piena, rilevante estensione delle aree inondabili, coinvolgimento di insediamenti abitativi e produttivi di grande importanza, infrastrutture strategiche e principali vie di comunicazione. Tale analisi ha portato all'individuazione e selezione, tra le aree a rischio individuate di 7 aree a rischio significativo a scala di bacino e 27 aree a rischio significativo a scala regionale. Fra queste ultime è stata individuata l'ARS RL25 "Ghedi, Calvisano - Torrente Garza" la cui pericolosità deriva dalle problematiche idrauliche generate dal torrente Garza, il cui corso, in tempi storici è stato artificialmente deviato verso le campagne dei territori di questa ARS ed è tutt'ora privo di un adeguato recapito per le acque di eventuali piene. Le aree mappate, oltre che dalla mappatura del reticolo principale eseguito dall'AdBPo, fanno rifermento anche ad informazioni presenti nella componente geologica del PGT di Ghedi, ad informazioni di studi di dettaglio effettuati da AdBPo nonché dalla mappatura eseguita da URBIM per il reticolo secondario di pianura.


Nella fattispecie del caso in esame risulta presente il seguente scenario di pericolosità:

Ambito Territoriale	Scenario
RP - torrente Garza	H/M
RSP	Н

Qui di seguito si riportano gli estratti cartografici così come individuati nell'elaborato "V.A. - Aree a rischio significativo di alluvione - ARS Regionali e Locali - Relazione Regione Lombardia".

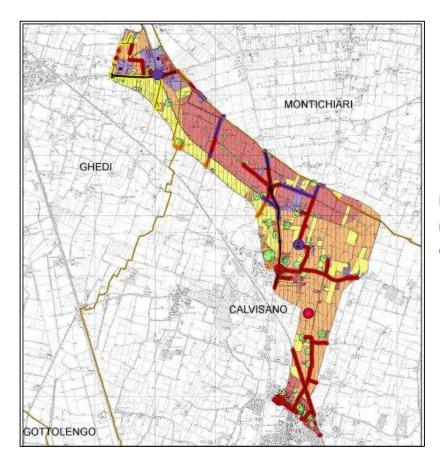


Fig. 10: Estratto cartografico della mappa di pericolosità (RL25 - Ghedi, Calvisano - Torrente Garza) .

La perimetrazione riportata nella figura soprastante verrà inserita nella "Carta di Sintesi" mentre la sottostante mappa di rischio dovrà essere recepita nel Piano di Emergenza Comunale al fine di adeguare lo scenario di rischio idrogeologico afferente al territorio in esame.

Fig. 11: Estratto cartografico della mappa di rischio (RL25 - Ghedi, Calvisano - Torrente Garza) .

Per quanto riguarda le misure specifiche per la gestione del rischio (parte difesa del suolo) nell'ambito della relazione del PGRA per l'ARS sopracitata si prevedono le seguenti azioni:

N ARS	Corso d'acqua - ARS	OBIETTIVO GENERALE DI DISTRETTO - Obiettivo di ARS	Misura	Autorità responsabile / Livello di responsabilità
RL25	Ghedi, Calvisano - Torrente Garza	ASSICURARE MAGGIORE SPAZIO AI FIUMI - Preservare le aree esterne all'alveo	Delimitare le Fasce Fluviali	AdbPo
		inciso compatibili con l'espansione e la laminazione della piena di riferimento		
RL25	Ghedi, Calvisano - Torrente Garza	MIGLIORARE LA PERFORMANCE DEI SISTEMI DIFENSIVI ESISTENTI Garantire un livello di sicurezza adeguato agli elementi esposti ricadenti entro le aree inondabili	Predisporre la progettazione per il finanziamento e l'attuazione del canale colatore di gronda sud al Fiume Chiese dei territori in destra orografica dello stesso nei comuni di Ghedi, Montichiari, Calvisano ed Acquafredda (Bs)	Regione Lombardia
RL25	Ghedi, Calvisano - Torrente Garza	MIGLIORARE LA PERFORMANCE DEI SISTEMI DIFENSIVI ESISTENTI Garantire una adeguata manutenzione degli alvei e dei sistemi difensivi.	Pianificare ed attuare una adeguata manutenzione dei sistemi difensivi esistenti	Regione Lombardia

Tale situazione di criticità potrà essere rivista solo nel momento in cui il progetto di collegamento del Garza in Chiese, attualmente in fase di progettazione, sarà realizzata e collaudata e fino ad allora la perimetrazione in esame e le relative indicazioni dovranno essere ottemperate sia a livello di pianificazione territoriale che di previsione / prevenzione e gestione del rischio.

Oltre a questa situazione di particolare criticità idraulica / idrogeologica nell'ambito del PGRA è stata ripresa e riconfermata la situazione relativa alle fasce fluviali presenti sul Fiume Chiese, la cui perimetrazione sarà indicata nella "Carta dei Vincoli".

Fig. 12: Estratto cartografico della mappa di rischio alluvionale del Fiume Chiese in Comune di Calvisano.

3. INQUADRAMENTO DELLA ZONA D'INDAGINE

3.1. Localizzazione geografica

Il territorio del Comune di Calvisano si estende per 4.515 ettari (45,15Km²) nella parte sud-orientale della Provincia di Brescia ad una distanza media di 25Km dal capoluogo.

Il territorio comunale presenta una morfologia pianeggiante, con una pendenza media di 67m slm, digradante da nord verso sud con un massimo di 86m slm poco a nord di Viadana Bresciana e con una quota minima di 56m slm lungo il Fiume Chiese nei pressi del limite amministrativo con Carpenedolo e Visano.

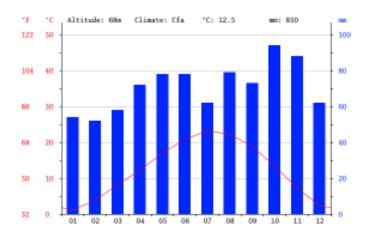
Dal punto di vista geografico risulta individuato dalle seguenti sezioni della C.T.R. della Regione Lombardia (scala 1:10.000)

- sezione D6c4 (Ghedi)
- sezione D6d4 (Montichiari sud)
- sezione D6c5 (Leno Est)
- sezione D6d5 (Carpenedolo Ovest)
- sezione D7c1 (Gottolengo)
- sezione D7d1 (Visano)

Partendo da nord e procedendo in senso orario i Comuni confinanti sono: Montichiari, Carpenedolo, Acquafredda, Visano, Isorella, Gottolengo e Ghedi. Le principali vie di comunicazione che interessano il territorio in esame sono rappresentate dalla BSSP37 "Isorella - Fascia d'Oro", dalla BSSP29 "Montichiari - Remedello", dalla BSSP69 "Calvisano - Carpenedolo" e dalla BSSP68 "Leno - Calvisano" con l'aggiunta della linea ferroviaria a binario unico che collega Brescia a Parma che taglia il Comune in questione lungo la direttrice Viadana Bresciana - Calvisano.

3.2. Inquadramento meteo-climatico

Tra la media valle del Ticino e l'alto Mincio si estende la fascia di pianura denominata "media pianura" che mano a mano che ci si sposta verso il bresciano e il confine con il Veneto va assottigliandosi per la naturale diminuzione delle quote fino a dissolversi incontrando i colli morenici del basso Garda. Non vi è una vera omogeneità climatica lungo tutta la sequenza di meridiani attraversati. Nelle parti pianeggianti della provincia di Brescia si ha un **periodo estivo** con molti meno temporali e precipitazioni rispetto al resto della provincia a causa della lontananza dai monti; la pluviometria estiva è nettamente inferiore rispetto alla pedemontana e al capoluogo di provincia. Tuttavia non mancano i passaggi temporaleschi intensi che in particolari condizioni possono portare a fenomeni di forte intensità, con accumuli di tutto rispetto nelle 24

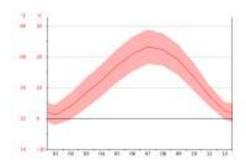

ore. Le temperature risultano abbastanza elevate come nel resto della pianura lombarda; la ventilazione è piuttosto debole, prevalentemente da sud-ovest nelle ore diurne e da nord o nord-est nelle ore notturne in regime di bel tempo, con rinforzi anche violenti solo in caso di temporali o venti di Föhn.

In **autunno**, l'inizio stagione dai sapori ancora estivi presenta rare eccezioni, con temporali sempre meno frequenti. Il caldo afoso comincia a scemare e dalla fine del mese di settembre sino a metà novembre prevalgono i passaggi perturbati intervallati da pause anticicloniche, normalmente poco durature ma con periodi di tempo stabile non infrequenti. Cominciano a comparire le prime foschie che talvolta e ormai sempre più raramente si tramutano in nebbie fitte. Verso la fine del mese di novembre arrivano anche le prime gelate (rare nel periodo precedente).

Nel **periodo invernale** la quota non favorisce certamente le nevicate altimetriche (rare da novembre a febbraio) ma, visto il periodo dell'anno favorevole al ristagno di aria fredda nella zona immediatamente prossima al terreno, questa stessa condizione incentiva la formazione di inversioni termiche sia notturne che diurne. Le notti invernali serene o con poche nubi sono caratterizzate da temperature quasi sempre sottozero.

Con l'avvento della **primavera** tendono a ripristinarsi le condizioni descritte per la stagione calda: le inversioni si spengono e si attenua la differenza con l'alta pianura anche se l'inizio di marzo può presentare ancora frequenti gelate. Iniziano i primi temporali, soprattutto a maggio, quando possono presentarsi situazioni favorevoli a notevoli accumuli in poche ore. Con la crescita dell'instabilità diurna abbinata al maggiore riscaldamento, compaiono le prime evidenti differenze pluviometriche con l'alta pianura.

Passando ora ad analizzare in dettaglio l'andamento climatico del territorio oggetto di studio si può notare come la distribuzione stagionale delle precipitazioni vede l'autunno come la stagione in cui si verificano le piogge più copiose; si registrano dei massimi relativi nei mesi di ottobre che, con 94 mm, è il mese con maggiori precipitazioni e novembre. Molto piovosi risultano anche i mesi di maggio ed agosto mentre i minimi di precipitazione media mensile si registrano a gennaio e a febbraio che, con 52 mm, è il mese più secco. La media annua è di circa 850 mm.



Per quanto riguarda le temperature, si osserva come nel periodo autunnale ed invernale la zona in oggetto sia caratterizzata da un andamento climatico moderatamente rigido. È evidente, in questo comportamento, la presenza del fenomeno nebbioso che riduce la radiazione solare incidente sul terreno.

Relativamente alle medie delle temperature si osserva che il mese più rigido è gennaio con una temperatura media di 1,1 C°, mentre il più caldo risulta essere luglio con una temperatura media di 23,2 C°. La media annuale complessiva di Calvisano è di 12,5 C°.

Per quanto riguarda l'umidità relativa e la formazione di nebbie, l'esame dei dati delle stazioni di Montichiari e Calcinato evidenzia come l'umidità relativa sia mediamente alta tutto l'anno, con valori massimi nei mesi invernali (ottobre, novembre e dicembre per Montichiari, dicembre e gennaio per Calcinato). La zona in esame, tipicamente pianeggiante, durante la stagione invernale talora risente del fenomeno nebbioso; l'inversione termica che si manifesta al suolo favorisce infatti la formazione di uno strato d'aria fredda stagnante che provoca la formazione delle nebbie.

3.3. Inquadramento geologico-geomorfologico generale

Il territorio del comune di Calvisano è ubicato a sud-est della zona di transizione dall'alta alla media pianura bresciana e si inserisce, da un punto di vista geomorfologico, nella fascia della media pianura bresciana ad occidente del fiume Chiese. L'alta pianura bresciana è costituita da ampie conoidi ghiaioso-sabbiose a morfologia sub-pianeggiante. La media pianura è caratterizzata da alluvioni fluvioglaciali e fluviali sabbioso-ghiaiose con intercalazioni limose ed argillose. Il passaggio dall'alta alla media pianura non è netto per la presenza di lenti e digitazioni di depositi grossolani e la fascia di transizione è segnata dalla comparsa dei primi fontanili. Da un punto di vista granulometrico i depositi rispettano la competenza delle acque da Nord a Sud e passano da depositi prevalentemente ghiaiosi nella pianura di Ghedi a depositi sabbioso-limosi del territorio di Calvisano, per terminare infine con sedimenti argillosi della bassa pianura Bresciana e Cremonese.

Da un punto di vista pedologico il Comune di Calvisano si inserisce all'interno del pedopaesaggio del **livello fondamentale della pianura**. Esso costituisce la pianura formata per colma mento fluviale nella fase finale

della glaciazione würmiana, all'esterno della cerchia morenica, tramite deposizione ed accumulo del carico grossolano trasportato dai corsi d'acqua alimentate dalle acque di fusione dei ghiacciai. I sedimenti hanno una granulometria variabile e decrescente man mano che si procede in direzione sud, in relazione alla riduzione della velocità e competenza delle acque. Proprio in funzione della granulometria dei sedimenti, nonché dell'idrologia superficiale e profonda, vengono individuati entro il livello fondamentale della pianura tre principali ambienti che si susseguono da nord verso sud.

Alta Pianura Ghiaiosa

Ambiente costituito da conoidi ghiaiosi, coalescenti, che formano una superficie debolmente inclinata a morfologia sub pianeggiante, solcata da corsi d'acqua a canali intrecciati soggetti a grande variabilità di portata e con elevata torbidità delle acque. Questo particolare regime fluviale "braided" ha originato depositi eterometrici con elevate percentuali di ghiaie e sabbie e grande variabilità granulometrica verticale e orizzontale. Attualmente coincide in larga parte con l'area di ricarica degli acquiferi profondi. Sulle superfici stabili e permeabili dell'alta pianura i processi pedogenetici prevalenti sono l'alterazione dei minerali primari delle rocce, l'ossidazione, la decarbonatazione e, successivamente a questa, la lisciviazione delle argille e il loro accumulo in profondità. I suoli sono da moderatamente profondi a profondi, con tessitura media o moderatamente grossolana e hanno reazione da neutra a più alcalina con tendenza al crescere del pH in profondità.

Media Pianura Idromorfa

Ambiente in cui, a causa della diminuzione di permeabilità dovuta alla riduzione granulometrica dei sedimenti, la falda freatica emerge alla superficie del suolo o permane a scarsa profondità. Conosciuta anche come **zona delle risorgive** è delimitata a nord dalla linea ideale che congiunge i primi fontanili e a sud dal loro organizzarsi in corsi d'acqua permanenti. In questo ambiente la pedogenesi è condizionata dai processi di rideposizione dovuti alle acque correnti o stagnanti e, soprattutto, dalla saturazione idrica del suolo a diverse profondità e per periodi più o meno lunghi. I suoli presenti hanno tessitura media o più grossolana con reazione tipicamente da neutra ad alcalina ed elevata saturazione basica.

Bassa Pianura sabbiosa

Ambiente stabile che ha consentito una prolungata pedogenesi sui materiali d'origine, con diffusa presenza di orizzonti di illuviazione d'argilla in profondità. I carbonati sono stati lisciviati ma in molti casi non del tutto rimossi dal suolo; si assiste pertanto alla diffusa presenza negli orizzonti profondi di carbonati secondari, anche in quantità elevata, in forma di masse soffici, patine ed anche concrezioni. I sedimenti che costituiscono la bassa pianura sono generalmente sabbioso-limosi; i suoli sono fertili, ben drenati. Hanno tessitura media o moderatamente fine. Hanno reazione neutra o più alcalina ed elevata saturazioni in basi.

Nel territorio di Calvisano si riscontra inoltre la presenza del Fiume Chiese che ha avuto ed ha una grande importanza sulla formazione di suoli e sedimenti. Infatti si può rilevare la presenza di:

Alluvioni del Chiese

Lungo l'asta fluviale del Chiese si trovano aree leggermente ribassate rispetto al livello generale della pianura circostante, dalla quale talora sono separate da limitate scarpate erosive. Nel territorio comunale di Calvisano le scarpate assumono buona continuità solo a sud di Mezzane. La distinzione tra alluvioni antiche e medio recenti può essere fatta in funzione del diverso grado di evoluzione dei suoli.

Alluvioni Medio Recenti

Si tratta di depositi ghiaioso sabbiosi con lenti di argilla più o meno estese; sono il prodotto delle recenti e attuali divagazioni del fiume; si trovano principalmente all'interno dell'alveo attivo. La granulometria è in genere legata alla distanza dall'asta fluviale; è bordata infatti da depositi a prevalente composizione ghiaiosa, che passano a termini sabbioso limosi avvicinandosi al bordo esterno delle alluvioni. Questo pedopaesaggio descrive le piane alluvionali laterali ed alla stessa quota del corso d'acqua, costruite a seguito di una dinamica prevalentemente deposizionale, le quali costituiscono la piana di tracimazione in occasione degli eventi di piena. In genere in ambienti fluviali di origine recente la pedogenesi è poco espressa, sia per la frequenza di episodi erosivi e deposizionali, sia perché queste superfici sono spesso sommerse, dal corso d'acqua stesso durante gli eventi di piena o dalla risalita di falde di subalveo.

Alluvioni Antiche

Nel territorio di Calvisano si rilevano lungo una fascia parallela al fiume Chiese. Questi depositi sono collegati all'azione di erosione e deposito dei corsi d'acqua successiva al periodo wurmiano e rappresentano la testimonianza delle passate divagazioni del fiume. Da un punto di vista litologico sono costituiti da ghiaie e sabbie alternate a livelli sabbio-limosi connessi alle fasi di esondazione. Il materiale che li costituisce deriva, dal rimaneggiamento dei materiali precedentemente depositati.

3.3.1. Interpretazione sezioni geologiche

Grazie alle numerose stratigrafie di pozzi presenti nel database Tangram è stato possibile procedere alla stesura della rispettiva colonna stratigrafica, quantomeno per i pozzi aventi le maggiori profondità. Infatti una cernita iniziale ha permesso di selezionare i pozzi profondi oltre 50m e successivamente di integrare il dato ottenuto con le stratigrafie dei pozzi aventi profondità compresa fra 30 e 50m.

A questo punto sono state individuate quattro sezioni significative per il territorio in esame di cui due orientate N-S (sezione A-A' e sezione B-B'), due orientate W-E (sezione C-C' e sezione D-D').

Nella sezione A-A' sono stati correlati sette pozzi rispettivamente in località Breda Caterina, Cascina Fortuna, Basalica, Case Oriani, Cascina Marcandona, Cascina Salvino e Calvisano. In essi si può notare la presenza di materiale ghiaioso nei primi 40/50 metri di profondità. In corrispondenza del pozzo di Cascina Fortuna sono presenti una lente di argilla a profondità 15 metri dal piano campagna e, a 30 metri di

profondità, un banco di argilla che, procedendo verso Sud, aumenta di spessore fino a raggiungere un massimo di circa 30 metri nelle vicinanze di Cascina Salvino. In generale, dopo 50 metri è in posto uno strato di argilla molto spesso (può raggiungere anche i 35 metri di spessore in località Basalica) con al suo interno piccole lenti sabbiose in concomitanza dei pozzi Breda Caterina e Case Oriani. Complessivamente si evidenzia una continua alternanza di strati ghiaiosi con strati argilloso/argilloso-sabbiosi.

Nella seconda sezione (N-S) B-B' sono stati correlati 4 pozzi: Colombara Orlandini, Cascina Croce Sera, Cascina Prato del Giuoco, Cascina Pistadora. Anche in questo caso i primi 30-35 metri della colonna stratigrafica sono dominati dalla presenza delle ghiaie. Solo nei pressi della Cascina Croce Sera si può individuare una spessa lente (circa 10 metri) di sabbia argillosa posta ad una profondità di 15 metri dal piano campagna. Le ghiaie, procedendo verso Sud, diminuiscono di spessore fino a un minimo di circa 15 metri nei pressi della Cascina Pistadora dove, invece, le argille hanno lo spessore massimo (35 metri). Anche in questa sezione si evidenzia comunque una generale alternanza di depositi ghiaiosi con quelli argillosi.

Nelle terza sezione (O-E) C-C' sono stati individuati 6 pozzi rappresentativi: Cascina Luogo del Principe, due all'interno dell'abitato di Viadana Bresciana, Cascina Minghini, Cascina Prato del Giuoco e infine nell'abitato di Mezzane. Anche in questa sezione i primi metri della colonna sono dominati dalle ghiaie le quali, procedendo verso Est, vanno progressivamente assottigliandosi fino a un minimo di 5 metri nell'abitato di Mezzane. Qui, data anche la vicinanza del Fiume Chiese che ha influenzato la meccanica deposizionale, predominano nettamente i materiali argillosi che si rinvengono dai 10 metri fino ai 130 metri di profondità. Si ha sempre quindi un'alternanza nella deposizione tra materiali ghiaiosi e materiali argillosi, questi ultimi prevalenti a Est.

Nella quarta sezione (O-E) D-D' sono evidenziati 6 pozzi: abitato di Malpaga, Cascina Salvino, due pozzi nei pressi dell'abitato di Calvisano, Cascina Gentile, Cascina Martinenga. In questa sezione viene confermato l'andamento stratigrafico della precedente con alternanza di ghiaie e argille con queste ultime nettamente prevalenti a Est.

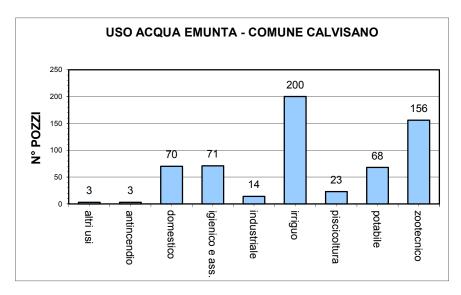
3.4. Idrografia ed idrogeologia

Il Fiume Chiese rappresenta il principale corso d'acqua del territorio comunale, scorre nel settore orientale e risulta artificialmente rettificato ed arginato. Il regime, di tipo prealpino, è caratterizzato da un periodo di magra invernale, e da due massimi di portata: uno in tarda primavera ed uno di entità minore in autunno.

L'influenza dell'azione drenante del Chiese sull'andamento della direzione di flusso della falda freatica nel sottosuolo, normalmente da nord verso sud, aumenta con l'avvicinarsi al suo alveo.

Sono presenti altri corsi d'acqua minori quali: il Naviglio di Isorella che scorre lungo il confine ovest del territorio comunale. Il Vaso Ceriana che si origina nel settore settentrionale del territorio comunale, ad ovest dell'abitato di Viadana Bresciana, scorre con direzione circa nord-sud nella porzione occidentale del Comune.

Il Vaso Palpice prende origine in corrispondenza di un fontanile e scorre nel settore centrale del Comune. Il Vaso Reale che scorre nel settore orientale in prossimità del Chiese.


Sono presenti inoltre altri corsi d'acqua decisamente minori che vanno a formare una rete idrografica costituita quasi totalmente da canali artificiali utilizzati per l'irrigazione. Tutti i corsi d'acqua presenti sono stati oggetti di studio e classificazione nell'ambito della definizione del reticolo idrografico minore (ai sensi della D.G.R. del 25.01.2002, n. VII/7868) a cui si rimanda per ulteriori approfondimenti.

Dal punto di vista idrogeologico l'inquadramento generale ha evidenziato una sostanziale uniformità della geologia di superficie, testimoniata dalla presenza di poche unità affioranti su vaste aree.

Come evidenziato nelle sezioni stratigrafiche dei pozzi, in realtà i depositi fluvioglaciali e fluviali superficiali presentano una ricca gamma di facies litologiche che comprende ghiaie, sabbie, limi, argille e torbe, generalmente ben stratificati e che costituiscono orizzonti stratiformi con spessore di parecchi metri e elevata estensione areale.

Per quanto concerne la presenza e la distribuzione delle opere di captazione idrica nel territorio di Calvisano, riprendendo quanto riportato nello Studio Geologico Comunale del Giugno 2008, si conferma la presenza di una distribuzione capillare di pozzi privati, ubicati in massima concentrazione in prossimità dei centri abitati e delle cascine isolate. Molto numerosi risultano infatti i pozzi privati ad uso sia idropotabile che agricolo e industriale.

Questa situazione si è venuta a creare in conseguenza della mancanza nel territorio del Comune di pozzi pubblici ad uso idropotabile e quindi di una rete di distribuzione acquedottistica dell'acqua potabile. Da quanto riportato nello studio geologico comunale del 2008, risultavano censiti più di 600 pozzi (dati Provincia di Brescia - Settore Ambiente), ad esclusione dei pozzi non denunciati. Secondo quei dati l'uso dell'acqua emunta risultava così suddiviso:

e la situazione non risulta molto diversa dalla situazione attuale. Infatti allo stato attuale dei 600 pozzi censiti il database Tangram dell'Università Milano Bicocca che riporta i dati forniti dal Settore Ambiente della Provincia di Brescia riporta i dati di 138 pozzi mentre i restanti non risultano ancora inseriti nel database sopracitato.

Operativamente parlando la maggioranza dei pozzi in Calvisano presentano tratto filtrante ad una profondità di circa 40m, corrispondente alla seconda falda, in particolare nessun pozzo a servizio di esercizi pubblici emunge acqua dall'acquifero più superficiale, mentre non è stato possibile accertare la profondità degli emungimenti relativi agli insediamenti privati.

Si evidenzia il fatto che i pozzi cartografati nella Carta <u>non corrispondono ai soli effettivamente esistenti sul territorio di Calvisano</u>; infatti, <u>non essendo presente una rete acquedottistica per la distribuzione dell' acqua potabile</u>, si presume che ogni edificio o gruppo di edifici (civili, industriali o agricoli) sia provvisto di un proprio pozzo privato per l'approvvigionamento idrico.

Si ritiene comunque che la cartografia proposta (vedi Tav. 03 "Carta Idrogeologia e di vulnerabilità della falda") illustri con sufficiente chiarezza la situazione degli emungimenti.

Attraverso l'analisi e la correlazione dei dati stratigrafici disponibili dalle sezioni stratigrafiche realizzate è stato possibile inoltre definire la struttura idrogeologica locale, struttura tipica della presenza di un acquifero multistrato, caratterizzato dall'alternanza di formazioni permeabili e semi-permeabili.

La falda ivi contenuta è di tipo libero (riceve apporti lateralmente e dalla superficie) mentre proseguendo da nord verso sud i livelli impermeabili di separazione tra falde sovrapposte tendono ad aumentare in spessore e continuità.

In relazione alla presenza di pozzi profondi di tipo artesiano adiacenti a pozzi terebrati a bassa profondità, ma con una quota piezometrica inferiore, si evince l'esistenza di una differenziazione idraulica degli acquiferi contenuti nel materasso alluvionale di Calvisano.

Probabilmente questi acquiferi profondi sono di tipo semiconfinato nei quali vi è un debole passaggio di acqua da una falda all'altra.

In tutto il territorio comunale è comunque presente, in modo abbastanza omogeneo, una falda superficiale di tipo libero che localmente nelle depressioni topografiche interferisce, durante il periodo irriguo, con i terreni di fondazione dei manufatti antropici.

In termini di vulnerabilità delle falde profonde quindi, il Comune di Calvisano, risulta tutelato per la presenza di orizzonti impermeabili o comunque a permeabilità molto ridotta; l'acquifero superficiale risulta invece poco protetto per la presenza di un "materasso" alluvionale principalmente ghiaioso.

3.5. Andamento della superficie piezometrica

Riprendendo quanto riportato nel precedente studio geologico comunale si ritiene che l'andamento della falda superficiale, ottenuta mediante un rilievo freatimetrico eseguito in occasione della stesura del primo studio geologico comunale su pozzi variamente posizionati sul territorio comunale ed ubicati in punti rappresentativi per la ricostruzione della piezometrica stessa e riverificati da una campagna di indagine effettuata nel periodo estate-autunno del 2007.

L'andamento della falda mantiene un andamento sostanzialmente concorde con quello della superficie topografica nella parte nord e centrale del comune con andamento da N verso S.

In generale la soggiacenza diminuisce da nord verso sud dove il livello piezometrico è a circa -1.50 m dal piano campagna.

Non è stata rilevata, in fase di analisi, la presenza di sorgenti di terrazzo, probabilmente a causa dell'esiguità dei terrazzi stessi e delle granulometrie relativamente grossolane che favoriscono gradienti idraulici comunque ridotti. Si ritiene tuttavia che in passato dovessero essere presenti venute d'acqua alla base dei terrazzamenti anche per la presenza sul territorio di toponimi indicativi di questi fenomeni.

Essi erano probabilmente mantenuti attivi dall'azione dell'uomo che ne impediva l'interramento.

3.6. Vulnerabilità della falda

La vulnerabilità della falda superficiale è influenzata da fattori quali la granulometria del sottosuolo, la profondità della falda superficiale, i suoli, la presenza di potenziali o reali punti di inquinamento ecc., ecc..

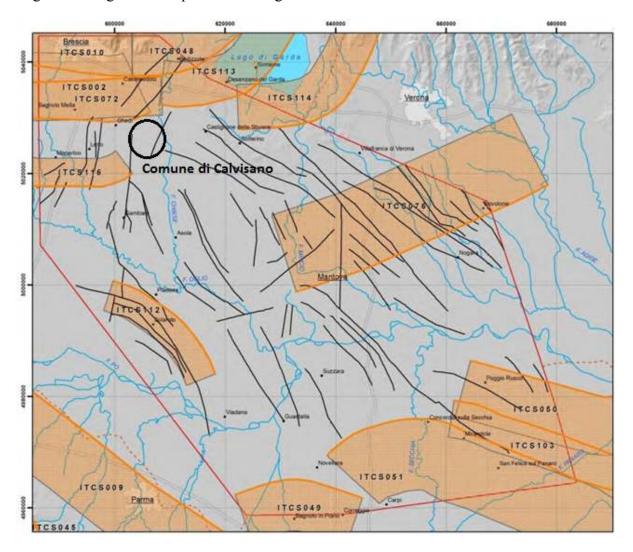
In generale il territorio comunale è caratterizzato da vulnerabilità da media ad elevata. Le due classi di vulnerabilità indicate in carta derivano, a parità delle altre condizioni sopra citate, essenzialmente dal tipo di granulometria del sottosuolo e dai suoli superficiali. Si ritiene pertanto che il territorio in esame sia caratterizzato dalla presenza di aree a:

• <u>Vulnerabilità media - elevata:</u> Aree caratterizzate da un grado medio di vulnerabilità per una, in genere, sufficiente protezione degli acquiferi dovuta sia alle caratteristiche tessiturali prevalenti degli orizzonti più superficiali che per la presenza di un suolo normalmente ben sviluppato. Valore indicativo della permeabilità: $10^{-2} < K < 10^{-4}$; Soggiacenza variabile mediamente minore di 3m.

• <u>Vulnerabilità alta:</u> Aree ad elevato grado di vulnerabilità per la presenza di depositi grossolani ghiaiosi in matrice sabbiosa o sabbiosa-limosa più o meno abbondante rinvenibili soprattutto nelle zone morfologicamente depresse di pertinenza dei principali corsi d'acqua della zona. Solo localmente il grado di vulnerabilità può attenuarsi per la presenza di orizzonti limosi o limoso sabbiosi. Valore indicativo della permeabilità: K > 10⁻²; Soggiacenza variabile e mediamente minore di 5m.

3.7. Aggiornamento "Carta Geologica e geomorfologica" e aggiornamento "Carta Idrogeologica e di vulnerabilità della falda"

Rispetto allo studio geologico comunale vigente con il presente studio si è proceduto alla stesura di una "Carta geologica e geomorfologica" nella quale oltre alla descrizione della morfologia attuale ed alle tipologie di depositi presenti si è provveduto ad ubicare le tracce delle sezioni geologiche individuate, la posizione e la tipologia delle indagini geognostiche / geofisiche riportate nell'Allegato 1; la medesima procedura è stata adottata per l'aggiornamento della "Carta Idrogeologica e di vulnerabilità della falda" nella quale si sono riportate le informazioni relative alla vulnerabilità degli acquiferi, l'ubicazione dei pozzi censiti in Tangram (vedi Allegato 2), l'ubicazione dei fontanili, il gradiente della falda freatica, ecc. ecc.



4. PERICOLOSITÀ SISMICA

4.1. Introduzione

Con riferimento a quanto già evidenziato nel capitolo 2 la sismicità di questa porzione del territorio bresciano è legata alla tettonica molto complessa del margine padano settentrionale ed alla presenza di diverse sorgenti sismogenetiche la cui attività si è palesata anche con terremoti di forte intensità (terremoto del Veronese del 1117 di $M_{\rm w}$ 6,7 - terremoto basso bresciano del 1222 di $M_{\rm aw}$ 6), sorgenti sismogenetiche riportate nella fig. 13 sottostante.

Fig. 13: Sorgenti sismogenetiche presenti nel DISS 3.2.0, dove in nero sono riportate le faglie dirette estratte dal modello geologico 3D del progetto "Geomol".

4.2. Evoluzione normativa sismica recente e zona sismica di appartenenza

La normativa sismica (D.M. 16 Gennaio 1996) in Italia, anteriormente al Marzo 2003, suddivideva il territorio nazionale in tre categorie di pericolosità sismica (elevata, media, bassa) in base ad una classificazione del 1984, realizzata nell'ambito del Progetto Finalizzato Geodinamica del Consiglio Nazionale delle Ricerche (CNR) che individuava anche una notevole porzione del territorio nazionale come Non Classificato. Nello specifico della Regione Lombardia erano stati individuati 41 Comuni di seconda categoria, di cui 36 in Provincia di Brescia mentre per il resto il territorio lombardo rientrava fra quelli non classificati.

Con l'OPCM 3274 del 20 Marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" è da considerarsi sismico secondo diversi livelli di pericolosità e la Regione Lombardia con D.G.R. 7 novembre 2003 n. 7/14964 ha recepito, in via transitoria e fino a nuova detrminazione, la classificazione sismica contenuta nell'OPCM sopracitata e per il Comune di Calvisano era previsto l'inserimento in zona sismica 3 con valore di ag pari a 0,145683.

Solo con la D.G.R. 11 luglio 2014, n X/2129 "Aggiornamento delle zone sismiche in Regione Lombardia (l.r. 1/2000, art. 3 c. 108, lett. d)" è stata ridefinita la classificazione sismica del territorio lombardo ed il Comune di Calvisano si è visto riconfermato in zona sismica 3 pur subendo un leggero incremento del valore di agmax pari ora a 0,148719. Si sottolinea che con la nuova classificazione i Comuni confinanti di Ghedi e Montichiari, originariamente inseriti in zona sismica 3 sono stati declassati e inseriti in zona sismica 2.

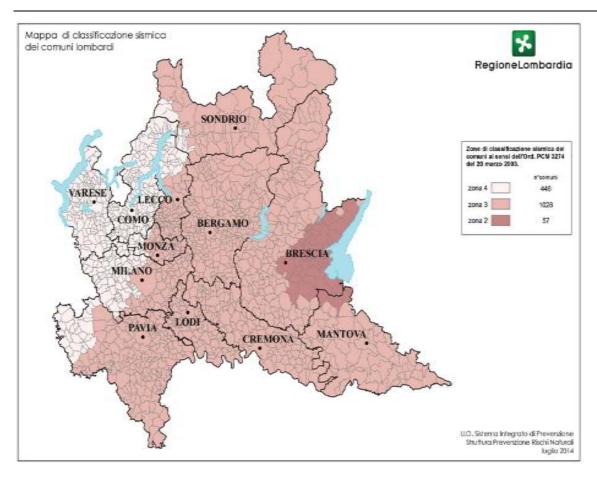


Fig. 14: Individuazione delle zone sismiche nell'ambito del territorio lombardo.

4.3. Storia sismica del Comune di Calvisano

Dalla consultazione del database macrosismico DBM15 (aggiornato al 2015) che fornisce un set omogeneo di intensità macrosismiche provenienti da diverse fonti e relativo ai terremoti con intensità massima ≥ 5 e d'interesse per l'Italia nella finestra temporale 1000 - 2014, emerge per il Comune di Calvisano la seguente storia sismica:

Effetti	In occasione del terremoto del			
Int.	Anno Me Gi Ho Mi Se Area epicentrale	NMDP	Io	Mw
5-6	තු 1901 10 30 14 49 5 Garda occidentale	289	7-8	5.44
4	තු 1915 10 10 23 10 Reggiano	30	6	4.87
4	යු 1989 09 13 21 54 0 Prealpi Vicentine	779	6-7	4.85
NF	ළු 2000 06 18 07 42 0 Pianura emiliana	304	5-6	4.40

Tabella 1: Storia sismica di Calvisano.

dove:

I(MCS): Intensità macrosismica espressa in scala MCS

Data: data dell'evento espresso in anno, mese, giorno, ora, minuti, secondi

AX: area epicentrale, area geografica in cui sono stati riscontrati gli effetti maggiori del terremoto

Np: Numero di punti, numero di osservazioni macrosismiche disponibili per il terremoto

Io: Intensità macrosismica epicentrale da CPT115, espressa in scala MCS, Mercalli-Cancani-Sieberg

Mw: Magnitudo momento da CPT15

mentre nel diagramma della storia sismica di Calvisano sono riportati gli eventi di seguito indicati:

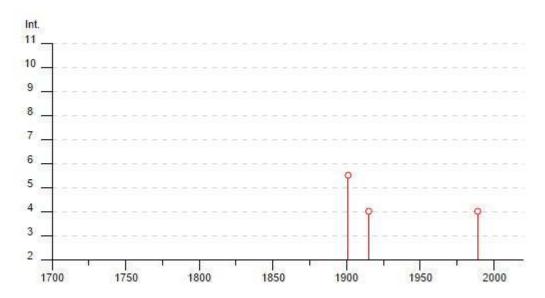


Fig. 15: Storia sismica di Calvisano.

4.4. Pericolosità Sismica Locale

La metodologia per la valutazione della Pericolosità Sismica Locale è definita nell'Allegato 5 "Analisi e valutazione degli effetti sismici di sito in Lombardia finalizzate alla definizione dell'aspetto sismico nei P.G.T." della DGR IX/2616/11.

Da quanto riportato nello studio geologico comunale del Giugno 2008, sul territorio comunale di Calvisano potrebbero verificarsi fenomeni di amplificazione sismica locale riferibile ai seguenti scenari:

Sigla	SCENARIO PERICOLOSITA' SISMICA LOCALE	EFFETTI	
Z1a	Zona caratterizzata da movimenti franosi attivi		
Z1b	Zona caratterizzata da movimenti franosi quiescenti	Instabilità	
Z1c	Zona potenzialmente franosa o esposta a rischio di frana	200000000000000000000000000000000000000	
Z2	Zone con terreni di fondazione particolarmente scadenti (riporti poco addensati, terreni granulari fini con falda superficiale)	Cedimenti e/o liquefazioni	
Z3a	Zona di ciglio H > 10 m (scarpata con parete subverticale, bordo di cava, nicchia di distacco, orlo di terrazzo fluviale o antropico)	Amplificazioni topografiche	
Z3b	Zona di cresta rocciosa e/o cocuzzolo: appuntite - arrotondate		
Z4a	Zona di fondovalle con presenza di depositi alluvionali e/o fluvio-glaciali granulari e/o coesivi		
Z4b	Zona pedemontana di falda di detrito, conoide alluvionale e conoide deltizio-lacustre	Amplificazioni litologiche e geometriche	
Z4c	Zona morenica con presenza di depositi granulari e/o coesivi (compresi le coltri loessiche)		
Z4d	Zone con presenza di argille residuali e terre rosse di origine eluvio-colluviale		
Z 5	Zona di contatto stratigrafico e/o tettonico tra litotipi con caratteristiche fisico-meccaniche molto diverse	Comportamenti differenziali	

che alla luce della normativa sopravvenuta nel frattempo devono intendersi come indicati ed evidenziati nella tabella sottostante:

Sigla	SCENARIO PERICOLOSITA' SISMICA LOCALE	EFFETTI	
Z1a	Zona caratterizzata da movimenti franosi attivi		
Z1b	Zona caratterizzata da movimenti franosi quiescenti	Instabilità	
Z1c	Zona potenzialmente franosa o esposta a rischio di frana		
Z2a	Zone con terreni di fondazione saturi particolarmente scadenti (riporti poco addensati, depositi altamente compressibili, ecc.)	Cedimenti	
Z2b	Zone con depositi granulari fini	Liquefazioni	
Z3a	Zona di ciglio H > 10 m (scarpata con parete subverticale, bordo di cava, nicchia di distacco, orlo di terrazzo fluviale o antropico)	Amplificazioni topografiche	
Z3b	Zona di cresta rocciosa e/o cocuzzolo: appuntite - arrotondate		
Z4a	Zona di fondovalle con presenza di depositi alluvionali e/o fluvio-glaciali granulari e/o coesivi		
Z4b	Zona pedemontana di falda di detrito, conoide alluvionale e conoide deltizio-lacustre	Amplificazioni litologiche e	
Z4c	Zona morenica con presenza di depositi granulari e/o coesivi (compresi le coltri loessiche)	geometriche	
Z4d	Zone con presenza di argille residuali e terre rosse di origine eluvio-colluviale		
Z 5	Zona di contatto stratigrafico e/o tettonico tra litotipi con caratteristiche fisico-meccaniche molto diverse	Comportamenti differenziali	

Pertanto al fine di addivenire ad una maggior definizione degli areali imputabili ai diversi scenari sismici realisticamente presenti sul territorio in esame e tenuto conto delle informazioni derivanti dalle numerose stratigrafie di pozzi di cui all'Allegato 2, viste le sezioni stratigrafiche elaborate (paragrafo 3.3.1 e Tav. 02) si è dato corso ad una campagna di indagini geofisiche (vedi Allegato 3 "Raccolta report illustrativi della campagna di indagini geofisiche") che ha previsto la realizzazione di 18 stendimenti di indagini sismiche con metodologia MASW individuati secondo lo schema riportato nella tabella seguente:

	Località	Interdistanza	Passo	Lunghezza	Profondità
Stendimento		geofonica (m)	energizzazione	stendimento	raggiunta
		g ····()	(m)	(m)	(m)
				, ,	
	Via Amerigo	4	+/- 4-8	92	Ca.35
Masw 1-13-09-16	Vesucci /				
	Scuole				
	Viadana B.				
	Via Kennedy /	4	+/- 4-8	92	Ca.45
Masw 2-13-09-16	passaggio a				
Masw 2-13-09-10	livello ferrovia				
	Brescia-Parma				
	Via Donatello /	4	+/- 4-8	92	Ca.35
Masw 3-13-09-16	Cimitero				
	Malpaga				
	Via Don	4	+/- 4-8	92	Ca.38
Masw 4-13-09-16	Bertolini /				
	Malpaga Ovest				
	Via Fontanelle	4	+/- 4-8	92	Ca.39
Masw 5-13-09-16	/ Mezzane				
	Nord				
	Via Paolo	4	+/- 4-8	92	Ca.42
Masw 6-13-09-16	Brognoli /				
	Mezzane Sud				
	Via per	4	+/- 4-8	92	Ca.35
M 7 17 00 16	Carpenedolo /				
Masw 7-17-09-16	Cascina				
	Sacchetti				
	Via per	4	+/- 4-8	92	Ca.46
Masw 8-17-09-16	Carpenedolo /				
1VIaSW 0-1/-U9-10	Cascina				
	Maggio				
	Via Zille	4	+/- 4-8	92	Ca.38
Masw 9-17-09-16	Superiore				

	Località	Interdistanza	Passo	Lunghezza	Profondità
Stendimento		geofonica (m)	energizzazione	stendimento	raggiunta
			(m)	(m)	(m)
	Cascina San	4	+/- 4-8	92	Ca.35
Masw 10-22-09-16	Francesco				
M. 11 22 00 16	Cascina	3	+/- 3-6	92	Ca.33
Masw 11-22-09-16	Pistadorae				
	Viadana SE	4	+/- 4-8	92	Ca.33
Masw 12-24-09-16					
	_				
Masw 13-24-09-16	Cascina	4	+/- 4-8	92	Ca.40
Widsw 13-24-09-10	Salvine				
	Cascina	3	+/- 3-6	69	Ca.33
Masw 14-24-09-16	Colomberone				
	Sud				
	Località	3	+/- 3-6	69	Ca.37
Masw 15-24-09-16	Belvedere				
	Via Zille	3	+/- 3-6	69	Ca.49
Masw 16-24-09-16	Inferiore				
			. / . / . 0	20	G. 22
Masw 17-24-09-16	Cascina	4	+/- 4-8	92	Ca.32
1.145W 17 24 07-10	Misericordia				
	Via Filippo	4	+/- 4-8	92	Ca.33
Masw 18-24-09-16	Turati				

Tabella 2: Ubicazione stendimenti sismici metodologia MASW.

Alla luce delle risultanze della campagna di indagini geofisiche si è proposto il seguente aggiornamento della Carta della Pericolosità Sismica Locale (Tav. 03).

4.5. Aggiornamento Carta della Pericolosità Sismica Locale.

L'applicazione del I° livello di approfondimento sismico, alla luce delle informazioni del sottosuolo cosi come riassunte nei capitoli precedenti e l'interpretazione degli linee sismiche MASW effettuate portano a ritenere lo scenario sismico Z4a "Zona di fondovalle e di pianura con presenza di depositi alluvionali e/o fluvio-glaciali granulari e/o coesivi" maggiormente veritiero della situazione comunale rispetto all'attualmente individuato scenario sismico Z2. Inoltre vista la geologia del sottosuolo e tenuto conto delle risultanze delle linee sismiche MASW effettuate si ritiene di poter estendere lo scenario sismico Z4a a tutto il

territorio in esame. Dall'effettuazione delle linee sismiche MASW e dalla relativa 'analisi di II livello si evince invece quanto segue:

- la quasi totalità degli stendimenti sismici elaborati presenta il mancato rispetto del Fattore di Amplificazione Fa quantomeno nell'intervallo di frequenza 0,1 0,5s corrispondente a quello degli edifici bassi, che rappresenta la tipologia strutturale predominante dei centri abitati del Comune di Calvisano. Questa situazione comporta che i parametri sismici della corrispondente categoria di sottosuolo relativa al valore di Vs30 misurato non presentano il sufficiente grado di cautela rispetto all'azione sismica e per tale motivo, in fase di progettazione si dovrebbe procedere ad utilizzare la categoria di sottosuolo che permette il rispetto del fattore di amplificazione misurato oppure procedere con analisi di III livello sismico o di Risposta Sismica Locale.
- la verifica di cui al punto precedente evidenzia quindi la presenza di <u>aree suscettibili di amplificazione sismica sistematicamente diffuse su tutto il territorio in esame</u>. Pertanto si ritiene necessario, ogniqualvolta si progetteranno nuove costruzioni sia pubbliche che private e/o si ristruttureranno edifici esistenti, siano essi sia pubblici che privati, sottoporre le verifiche di Vs30 e categoria di sottosuolo effettuate in applicazione delle NTC08, alla procedura di II livello sismico ai sensi dell'Allegato 5 della DGR IX/2616/11, la cui metodologia si fonda sull'analisi di indagini dirette e prove sperimentali effettuate su alcune aree campione della Regione Lombardia ed i cui risultati sono contenuti in uno "Studio Pilota" redatto dal Politecnico di Milano Dipartimento di Ingegneria Strutturale in convenzione con la Regione Lombardia qui di seguito indicato:
 - ✓ F. Pergalani M. Compagnoni V. Petrini: "Analisi e valutazione degli effetti sismici di sito in Lombardia finalizzate alla definizione dell'aspetto sismico nei Piani di Governo del Territorio"; Milano Novembre 2005.

Maggiori informazioni circa le indagini svolte e le risultanze delle stesse sono riportate nell'<u>Allegato 3:</u> "Raccolta Report illustrativi della campagna di indagini geofisiche" mentre per quanto riguarda la relativa ubicazione si rimanda alla <u>Tav.03: "Carta della pericolosità sismica locale di I° livello del territorio comunale (scala 1:10.000)".</u>

5. FASE DI SINTESI / VALUTAZIONE

5.1. Vincoli esistenti e aggiornamento Carta dei Vincoli

Preso atto di tutto quanto fino ad ora descritto si è quindi proceduto con l'aggiornamento della "Carta dei Vincoli" nell'ambito della quale sono stati individuati:

- i vincoli derivanti dalla pianificazione di bacino ai sensi della L. 183/89 che per quanto riguarda il territorio in esame coincidono con le fasce fluviali (A, B e C) del Fiume Chiese;
- i vincoli di Polizia Idraulica che nella fattispecie riprendono le fasce di rispetto del reticolo idrico minore
 cosi come individuato già nel precedente studio geologico comunale su tutto il reticolo idrico scolante
 con l'individuazione di una fascia di 10m di rispetto per i corsi d'acqua afferenti al reticolo idrico
 principale e di 5m per i corsi d'acqua riferiti al reticolo idrico minore;
- i vincoli relativi all'individuazione delle captazioni ad uso idropotabile che nella fattispecie del territorio comunale di Calvisano, in assenza di acquedotto pubblico sono state estese a tutti i pozzi presenti nel database Tangram ed identificati come pozzi la cui tipologia di utilizzo è stata indicata come "potabile" o più genericamente come "prelievo" escludendo invece quelli la cui tipologia di utilizzo era indicata come "irrigazione" o "industriale". Ai pozzi così individuati è stata associata una fascia di tutela assoluta di 10m ed una fascia di rispetto di 200m di raggio.

Tutte le informazioni soprariportate sono state inserite e cartografate nella <u>Tav.04: "Carta dei Vincoli di</u> natura geologica del territorio comunale (scala 1:10.000)".

5.1.1. Aree di salvaguardia delle risorse idriche

Per assicurare, mantenere e migliorare le caratteristiche qualitative delle acque da destinare al consumo umano, sono stabilite le aree di salvaguardia così come di seguito elencato: zone di tutela assoluta, zona di rispetto, zona di protezione.

Le zone di tutela assoluta e le zone di rispetto si riferiscono alle sorgenti, ai pozzi ed ai punti di presa; le zone di protezione si riferiscono ai bacini imbriferi ed alle aree di ricarica delle falde.

Zona di tutela assoluta: La zona di tutela assoluta è adibita esclusivamente ad opera di presa ed a costruzioni di servizio; deve essere recintata e provvista di canalizzazione per le acque meteoriche e deve avere un'estensione di raggio non inferiore a 10m, ove possibile. L'estensione di tale zona è adeguatamente ampliata in relazione alla situazione locale di vulnerabilità e rischio della risorsa.

Zona di rispetto: Le zone di rispetto sono delimitate in relazione alle risorse idriche da tutelare e comunque devono avere un'estensione di raggio non inferiore a 200 metri rispetto al punto di captazione. tale estensione può essere ridotta in relazione alla situazione locale di vulnerabilità e rischio della risorsa.

Nella zona di rispetto sono vietati l'insediamento dei seguenti centri di pericolo e lo svolgimento delle seguenti attività:

- dispersione di fanghi ed acque reflue, anche se depurati;
- accumulo di concimi chimici fertilizzanti pesticidi;
- spandimento di concimi chimici, fertilizzanti e/o pesticidi, salvo che l'impiego di tali sostanze sia
 effettuato sulla base delle indicazioni di uno specifico piano di utilizzazione che tenga conto della natura
 dei suoli, delle colture compatibili, delle tecniche agronomiche impiegate e della vulnerabilità delle
 risorse idriche;
- dispersione nel sottosuolo di acque meteoriche provenienti da piazzole e strade;
- aree cimiteriali;
- apertura di cave che possono essere in connessione con la falda;
- apertura di pozzi ad eccezione di quelli che estraggono acque destinate al consumo umano e di quelli finalizzati alla variazione dell'estrazione ed alla protezione delle caratteristiche quali-quantitative della risorsa idrica;
- gestione rifiuti;
- stoccaggio di prodotti ovvero sostanze pericolose e sostanze radioattive.
- centri di raccolta, demolizione e rottamazione di autoveicoli;
- pozzi perdenti;
- pascolo e stabulazione di bestiame che ecceda i 170 chilogrammi per ettaro di azoto presente negli
 effluenti, al netto delle perdite di stoccaggio e distribuzione. E' comunque vietata la stabulazione di
 bestiame nella zona di rispetto ristretta.

Per gli insediamenti o le attività di cui al comma 5, preesistenti, ove possibile e comunque ad eccezione delle aree cimiteriali, sono adottate le misure per il loro allontanamento: in ogni caso deve essere garantita la loro messa in sicurezza.

In base alle "Direttive per la disciplina delle attività all'interno delle zone di rispetto" - allegato 1 punto 3 della D.G.R. 7/12693/2003 si riporta quanto segue:

Disciplina delle zone di rispetto

Realizzazione di fognature

Ai fini dell'applicazione del presente atto, per fognature si intendono i collettori di acque bianche, di acque nere e di acque miste, nonché le opere d'arte connesse, sia pubbliche sia private.

I nuovi tratti di fognatura da situare nelle zone di rispetto devono:

- ✓ costituire un sistema a tenuta bidirezionale, cioè dall'interno verso l'esterno e viceversa, e recapitare esternamente all'area medesima;
- ✓ essere realizzati evitando, ove possibile, la presenza di manufatti che possano costituire elemento di discontinuità, quali i sifoni e opere di sollevamento.

Ai fini della tenuta, tali tratti potranno in particolare essere realizzati con tubazioni in cunicolo interrato dotato di pareti impermeabilizzate, avente fondo inclinato verso l'esterno della zona di rispetto, e corredato di pozzetti rompitratta i quali dovranno possedere analoghe caratteristiche di tenuta ed essere ispezionabili, oggetto di possibili manutenzioni e con idonea capacità di trattenimento.

In alternativa, la tenuta deve essere garantita con l'impiego di manufatti in materiale idoneo e valutando le prestazioni nelle peggiori condizioni di esercizio, riferite nel caso specifico alla situazione di livello liquido all'intradosso dei chiusini delle opere d'arte.

Nella zona di rispetto di una captazione da acquifero non protetto:

- ✓ non è consentita la realizzazione di fosse settiche, pozzi perdenti, bacini di accumulo di liquami e impianti di depurazione;
- ✓ è in generale opportuno evitare la dispersione di acque meteoriche, anche provenienti da tetti, nel sottosuolo e la realizzazione di vasche di laminazione e di prima pioggia.

Per tutte le fognature nuove (principali, secondarie, allacciamenti) insediate nella zona di rispetto sono richieste le verifiche di collaudo.

I progetti e la realizzazione delle fognature devono essere conformi alle condizioni evidenziate e la messa in esercizio delle opere interessate è subordinata all'esito favorevole del collaudo.

Realizzazione di opere e infrastrutture di edilizia residenziale e relativa urbanizzazione

Al fine di proteggere le risorse idriche captate i Comuni, nei propri strumenti di pianificazione urbanistica, favoriscono la destinazione delle zone di rispetto dei pozzi destinati all'approvvigionamento potabile a «verde pubblico», ad aree agricole o ad usi residenziali a bassa densità abitativa.

Nelle zone di rispetto:

- ✓ per la progettazione e la costruzione degli edifici e delle infrastrutture di pertinenza non possono essere eseguiti sondaggi e indagini di sottosuolo che comportino la creazione di vie preferenziali di possibile inquinamento della falda;
- ✓ le nuove edificazioni possono prevedere volumi interrati che non dovranno interferire con la falda captata, in particolare dovranno avere una distanza non inferiore a 5 m dalla superficie freatica, qualora l'acquifero freatico sia oggetto di captazione. Tale distanza dovrà essere determinata tenendo conto delle oscillazioni piezometriche di lungo periodo (indicativamente 50 anni).
 - In tali zone non è inoltre consentito:
- ✓ la realizzazione, a servizio delle nuove abitazioni, di depositi di materiali pericolosi non gassosi, anche in serbatoi di piccolo volume a tenuta, sia sul suolo sia nel sottosuolo (stoccaggio di sostanze chimiche pericolose ai sensi dell'articolo 21, comma S, lettera i) del d.lgs. 152/99);
- ✓ l'insediamento di condotte per il trasporto di sostanze pericolose non gassose;
- ✓ l'utilizzo di diserbanti e fertilizzanti all'interno di parchi e giardini, a meno di non utilizzare sostanze antiparassitarie che presentino una ridotta mobilità nei suoli.

Realizzazione di infrastrutture viarie, ferroviarie ed in genere infrastrutture di servizio

Nelle zone di rispetto <u>è consentito</u> l'insediamento di nuove infrastrutture viarie e ferroviarie, fermo restando il rispetto delle prescrizioni di seguito specificate.

Le infrastrutture viarie a elevata densità di traffico (autostrade, strade statali, provinciali, urbane a forte transito) devono essere progettate e realizzate in modo da garantire condizioni di sicurezza dallo sversamento ed infiltrazione di sostanze pericolose in falda, prevedendo allo scopo un manto stradale o un cassonetto di base impermeabili e un sistema per l'allontanamento delle acque di dilavamento che convogli gli scarichi al di fuori della zona indicata o nella fognatura realizzata in ottemperanza alle condizioni in precedenza riportate.

Lungo tali infrastrutture non possono essere previsti piazzali per la sosta, per il lavaggio di mezzi di trasporto o per il deposito, sia sul suolo sia nel sottosuolo, di sostanze pericolose non gassose.

Lungo gli assi ferroviari non possono essere realizzati binari morti adibiti alla sosta di convogli che trasportano sostanze pericolose.

È vietato, nei tratti viari o ferroviari che attraversano la zona di rispetto, il deposito e lo spandimento di sostanze pericolose, quali fondenti stradali, prodotti antiparassitari ed erbicidi, a meno di non utilizzare sostanze che presentino una ridotta mobilità nei suoli.

Per le opere viarie o ferroviarie da realizzare in sottosuolo deve essere garantita la perfetta impermeabilizzazione delle strutture di rivestimento e le stesse non dovranno interferire con l'acquifero captato, in particolare dovrà essere mantenuta una distanza di almeno 5 m dalla superficie freatica, qualora l'acquifero freatico sia oggetto di captazione. Tale distanza dovrà essere determinata tenendo conto delle oscillazioni piezometriche di lungo periodo (indicativamente 50 anni).

È opportuno favorire la costruzione di cunicoli multiuso per il posizionamento di varie infrastrutture anche in tempi successivi, in modo da ricorrere solo in casi eccezionali ad operazioni di scavo all'interno della zona di rispetto.

Pratiche agricole

Nelle zone di rispetto sono consigliate coltivazioni biologiche, nonché bosco o prato stabile, quale ulteriore contributo alla fitodepurazione.

È vietato lo spandimento di liquami e la stabulazione, come previsto dal Regolamento Attuativo della legge regionale n. 37 del 15 dicembre 1993 «Norme per il trattamento la maturazione e l'utilizzo dei reflui zootecnici».

Per i nuovi insediamenti e per quelle aziende che necessitano di adeguamenti delle strutture di stoccaggio, tali strutture non potranno essere realizzate all'interno delle aree di rispetto, così come dettato dall'art. 9 punto 7 del Regolamento Attuativo della L.R. n. 37 del 15 dicembre 1993 «Norme per il trattamento la maturazione e l'utilizzo dei reflui zootecnici».

L'utilizzo di fertilizzanti di sintesi e di fanghi residui di origine urbana o industriale è comunque vietato. Inoltre l'utilizzo di antiparassitari è limitato a sostanze che presentino una ridotta mobilità all'interno dei suoli.

Zone di protezione

Nelle zone di protezione possono essere adottate misure relative alla destinazione del territorio interessato, limitazioni per gli insediamenti civili, produttivi, turistici, agroforestali e zootecnici.

5.2. Aggiornamento Carta di Sintesi

Per quanto riguarda l'aggiornamento della "Carta di Sintesi" nell'ambito del presente studio si è proceduto con l'individuazione:

- delle aree vulnerabili dal punto di vista idrogeologico intendendo con questo termine tutte:
 - a) le aree ad elevata vulnerabilità degli acquiferi, caratterizzate da bassa soggiacenza della falda cosi come già evidenziato nella Tav. 2 "Carta Idrogeologica e di vulnerabilità della falda";
 - b) le aree interessate dalla presenza di emergenze idriche (fontanili).
- le aree che presentano scadenti caratteristiche geotecniche <u>diffuse su tutto il territorio comunale in quanto i primi metri della copertura quaternaria son quasi ovunque imputabili alla presenza di depositi fini di tipo limoso, limoso-sabbiosi, limoso-argillosi con caratteristiche coesive prevalenti. Solo al di sotto di questi si rinvengono bancate pluridecametriche di materiali coerenti con pezzatura eterogenea talora intercalati con materiali fini.</u>
- l'area a rischio significativo di alluvione denominata ARS RL25 "Ghedi, Calvisano Torrente Garza" la cui pericolosità deriva dalle problematiche idrauliche generate dal torrente Garza, il cui corso, in tempi storici è stato artificialmente deviato verso le campagne dei territori di questa ARS ed è tutt'ora privo di un adeguato recapito per le acque di eventuali piene (vedi paragrafo 2.3 della presente relazione).

Tutte le informazioni soprariportate sono state inserite e cartografate nella <u>Tav.05: "Carta di Sintesi del</u> territorio comunale (scala 1:10.000)".

6. FASE DI PROPOSTA - AGGIORNAMENTO CARTA DELLA FATTIBILITÀ GEOLOGICA PER LE AZIONI DI PIANO

6.1. Premessa

La "Carta della Fattibilità Geologica per le azioni di Piano" del territorio comunale in esame, che rappresenta il risultato finale delle fasi precedenti di analisi dell'assetto geologico, geomorfologico, idrogeologico e geotecnico nonché sismico, fornisce le indicazioni in ordine alle limitazioni e destinazioni d'uso del territorio, alle prescrizioni per gli interventi urbanistici, agli studi ed alle indagini da effettuare per gli approfondimenti richiesti, alle opere di mitigazione del rischio ed alle necessità di controllo dei fenomeni in atto e potenziali.

A ciascuna classe di fattibilità individuata, corrispondono una serie di prescrizioni tecniche, riportate nel paragrafo successivo e che dovranno costituire parte integrante del "Piano delle Regole" del PGT comunale. Esse consentiranno ai servizi tecnici comunali una valutazione agevole dell'intervento proposto in relazione alle problematiche geologiche che caratterizzano le varie porzioni del territorio comunale.

Si sottolinea fin d'ora che le prescrizioni di seguito riportate sono valide, ferma restando la necessità di rispettare in fase di progettazione, per tutti gli interventi previsti dalla normativa vigente, le indicazioni del D.M. 14 Gennaio 2008 / NTC08 e relativa circolare applicativa (Circolare 2 febbraio 2009, n. 617, C.S.LL.PP.).

Lo studio geologico, geotecnico e sismico da predisporre ai sensi di tali normative, con analisi critica degli elaborati geologici allegati al PGT ed idonea documentazione relativa all'adempimento delle prescrizioni ivi contenute, dovrà essere allegato alla documentazione tecnica a corredo di ogni richiesta di permesso di costruire e/o autorizzazione edilizia.

Tutti gli elaborati previsti dovranno essere redatti altresì da tecnico abilitato sulla base delle prove sperimentali e sulla base dei rilievi di terreno effettuati in ordine alle problematiche di natura geologica, idrogeologica, dinamica geomorfologica, di rischio idrogeologico / idraulico, geofisico e di rischio sismico nonché in merito alle problematiche di tipo geotecnico.

6.2. Aggiornamento Carta della Fattibilità Geologica per le azioni di Piano

La carta della fattibilità geologica è stata redatta in due fogli alla scala 1:5.000 (Tav. 07a: Carta della Fattibilità Geologica per le Azioni di Piano - Foglio Calvisano Nord e Tav. 07b: Carta della Fattibilità Geologica per le Azioni di Piano - Foglio Calvisano Sud).

Essa suddivide il territorio comunale in 4 classi principali di fattibilità geologica e varie sottoclassi con specifiche limitazioni d'uso a carattere crescente partendo dalla classe meno elevata a cui corrispondono minori limitazioni.

Le varie classi di fattibilità sono state distinte in sottoclassi in funzione dei diversi fattori e delle diverse problematiche che interessano il territorio o in base ai vincoli di seguito richiamati:

- ✓ Aree vulnerabili dal punto di vista idrogeologico quali:
 - a) aree ad elevata vulnerabilità dell'acquifero sfruttato ad uso idropotabile e/o primo acquifero.
 - b) aree con emergenze idriche diffuse (fontanili).
 - c) aree a bassa soggiacenza della falda o con presenza di falde sospese.
- ✓ Aree vulnerabili dal punto di vista idraulico come l'area a rischio significativo di alluvione denominata ARS RL25 "Ghedi, Calvisano Torrente Garza".
- ✓ Aree che presentano scadenti caratteristiche geotecniche.

La determinazione delle aree a differente fattibilità geologica deriva dall'analisi comparata di tutti gli elementi fisiografici primari (geologici, idrogeologici, geomorfologici e geologico-tecnici) riportati negli elaborati grafici e negli allegati così descritti nei precedenti capitoli, correlati con gli specifici caratteri di pericolosità e sensibilità ambientale.

Lo scopo è quello di visualizzare nella maniera semplice ed organica le attitudini del territorio, con particolare attenzione ai fini edilizi, all'urbanizzazione e ad altri interventi sul territorio nel rispetto delle caratteristiche geoambientali / naturali.

In particolare, ai fini della zonazione della classe di fattibilità, si è tenuto conto delle valutazioni della pericolosità dei singoli fenomeni, degli scenari di rischio conseguenti e della componente geologico - ambientale di una determinata area precedentemente individuata nella carta di sintesi.

Nella delimitazione della classe di fattibilità si è tenuto conto della presenze delle aree a maggior pericolosità sismica locale. Laddove si è verificata la sovrapposizione di più ambiti di pericolosità e/o vulnerabilità, coesistono diverse sottoclassi di fattibilità, per le quali è necessario applicare le prescrizioni del presente studio.

Si ribadisce infine che tali prescrizioni non sono sostitutive di quanto previsto dalla normativa vigente in fase di progettazione (NTC08) risultando, ai fini di progettazione, altresì integrative delle stesse. Mantengono invece tutto il livello prescrizionale previsto per gli aspetti urbanistici e pianificatori solitamente preliminari alla progettazione di interventi edilizi pubblici e/o privati.

6.3. Norme Geologiche di Piano

Di seguito si riportano le norme geologiche attribuite alle diverse classi e relative sottoclassi di fattibilità geologica individuate sul territorio comunale di Calvisano.

Classe 1 (bianca): Fattibilità senza particolari limitazioni

La classe comprende quelle aree che non presentano particolari limitazioni all'utilizzo a scopi edificatori e/o alla modifica della destinazione d'uso e per le quali deve essere direttamente applicato quanto prescritto dal D.M. 14 gennaio 2008 (NTC08) e relativa circolare applicativa (Circolare 2 febbraio 2009, n. 617, C.S.LL.PP.).

Nel territorio comunale esaminato non sono state rilevate aree attribuibili a tale classe di fattibilità.

Classe 2 (gialla): Fattibilità con modeste limitazioni

La classe comprende le zone nelle quali sono state riscontrate modeste limitazioni all'utilizzo a scopi edificatori e/o alla modifica della destinazione d'uso, che possono essere superate mediante approfondimenti di indagine ed accorgimenti tecnico-costruttivi e senza l'esecuzione di opere di difesa.

Nel territorio comunale in esame <u>non sono state rilevate aree attribuibili a tale classe di fattibilità</u>.

Classe 3 (arancione): Fattibilità con consistenti limitazioni

La classe comprende le zone nelle quali sono state riscontrate consistenti limitazioni all'utilizzo a scopi edificatori e/o alla modifica della destinazione d'uso per le condizioni di pericolosità/vulnerabilità individuate, per il superamento delle quali potrebbero rendersi necessari interventi specifici o opere di difesa.

L'utilizzo di queste zone sarà pertanto subordinato alla realizzazione di supplementi di indagine, per acquisire una migliore conoscenza geologico e geotecnica dell'area e del suo intorno, mediante campagne geognostiche, prove in sito e/o in laboratorio, nonché mediante studi specifici di varia natura (idrogeologici, idraulici, ambientali, pedologici) secondo il D.M. 14 gennaio 2008 (NTC08) e relativa circolare applicativa (Circolare 2 febbraio 2009, n. 617, C.S.LL.PP.). Ciò dovrà consentire di precisare le idonee destinazioni d'uso, le volumetrie ammissibili, le tipologie costruttive più opportune, nonché le opere di sistemazione e bonifica. Per l'edificato esistente dovranno essere fornite indicazioni in merito alle indagini da eseguire per la progettazione e realizzazione delle opere di difesa, sistemazione idrogeologica e degli eventuali interventi di mitigazione degli effetti negativi indotti dall'edificato.

Si specifica che <u>le indagini e gli approfondimenti prescritti per tale classe di fattibilità</u>, come anche per le altre classi, <u>devono essere realizzati prima della progettazione degli interventi in quanto propedeutici alla pianificazione dell'intervento e alla progettazione stessa.</u>

Copia delle indagini effettuate e della relazione geologica di supporto deve essere consegnata, congiuntamente alla restante documentazione, in sede di presentazione dei Piani attuativi (L.R. 12/05, art. 14) o in sede di richiesta del permesso di costruire (L.R. 12/05, art. 38).

sottoclasse 3A: in questa sottoclasse ricadono le aree a limitata soggiacenza della falda freatica, caratterizzate nei primi metri di spessore dalla presenza di depositi con caratteristiche geotecniche scadenti, nell'ambito della quale per la realizzazione di edifici in genere e opere infrastrutturali si prescrivono approfondimenti di tipo geotecnico con l'esecuzione di indagini geognostiche in sito e/o in laboratorio e valutazioni di natura idrogeologica, mediante il posizionamento di piezometri, valutazioni finalizzate alla verifica della soggiacenza della falda rispetto al piano di posa delle fondazioni. I dati raccolti serviranno, oltre che alla caratterizzazione geotecnica dei terreni, anche ad effettuare valutazioni in merito alla liquefazione dei terreni da effettuarsi qualora la verifica di II livello sismico comporti il supero del Fattore di Amplificazione fa sitospecifico. Verranno di conseguenza fornite le soluzioni più idonee ai fini della prevenzione sismica ed al fine del corretto dimensionamento delle opere di fondazione in relazione ai valori di capacità portante e dei cedimenti differenziali.

sottoclasse 3B: In questa classe ricadono le aree a rischio idrogeologico (fasce PAI del Fiume Chiese e area a pericolosità idraulica significativa ARS RL25 "Ghedi, Calvisano. torrente Garza") dove la realizzazione di eventuali opere è vincolata ad una analisi che determini la loro compatibilità con la reale situazione di rischio idrogeologico o stato di manutenzione dell'alveo (materiale vario e vegetazione) e di efficacia ed efficienza delle opere di difesa idraulica presenti lungo l'asta fluviale. Tenuto conto delle risultanze della verifica verranno proposti gli interventi più idonei per minimizzare i rischi presenti.

sottoclasse 3C: In questa classe ricadono le Aree di Salvaguardia di sorgenti e pozzi deputate al consumo umano – ai sensi del d.lgs. 11.05.1999 n. 152 e successive modificazioni, della d.g.r. 10.04.2003 n. 7/12693. (vedi cartografia) Su tali aree, oltre ai vincoli già presenti riferiti alle altre classi di fattibilità, si dovranno seguire le "direttive per la disciplina delle attività all'interno delle zone di rispetto" contenute al comma 5 art. 21 del Dlgs 152/99 e le "*Direttive per la disciplina delle attività all'interno delle zone di rispetto*" – allegato 1 punto 3 della d.g.r.12693/2003. Per le attività vietate e/o consentite si rimanda al paragrafo relativo ai "Vincoli esistenti" della presente relazione.

L'alta pericolosità/vulnerabilità comporta gravi limitazioni all'utilizzo a scopi edificatori e/o alla modifica della destinazione d'uso. Deve essere esclusa qualsiasi nuova edificazione, se non opere tese al consolidamento o alla sistemazione idrogeologica per la messa in sicurezza dei siti.

Per gli edifici esistenti saranno consentiti esclusivamente le opere relative ad interventi di demolizione senza ricostruzione, manutenzione ordinaria e straordinaria, restauro, risanamento conservativo, come definiti dall'art.27, comma 1, lettere a) b) c) della L.R. 12/05, senza aumento di superficie o volume e senza aumento del carico insediativo. Sono consentite le innovazioni necessarie per l'adeguamento alla normativa antisismica.

Si dovranno inoltre fornire indicazioni in merito alle opere di sistemazione idrogeologica e, per i nuclei abitati esistenti, quando non sarà strettamente necessario provvedere al loro trasferimento, dovranno essere predisposti idonei piani di protezione civile ed inoltre dovrà essere valutata la necessità di predisporre sistemi di monitoraggio geologico che permettano di tenere sotto controllo l'evoluzione dei fenomeni in atto. Eventuali opere pubbliche e di interesse pubblico che non prevedano la presenza continuativa e temporanea di persone, dovranno essere valutate puntualmente. A tal fine, alle istanze per l'approvazione da parte dell'autorità comunale, dovrà essere allegata apposita relazione geologica e geotecnica che dimostri la compatibilità degli interventi previsti con la situazione di grave rischio idrogeologico.

sottoclasse 4A: In questa classe ricadono le zone di tutela assoluta di sorgenti e pozzi deputate al consumo umano che dovranno essere tutelate secondo le prescrizioni contenute al comma 4 art. 21 del Dlgs 152/99 e smi di cui si allega un estratto:

"la zona di tutela assoluta è adibita esclusivamente ad opere di presa ed a costruzioni di servizio; deve essere recintata e provvista di canalizzazione per le acque meteoriche e deve avere un'estensione di raggio non inferiore a 10 metri, ove possibile. L'estensione di tale zona è adeguatamente ampliata in relazione alla situazione locale di vulnerabilità e rischio della risorsa".

sottoclasse 4B: In questa classe vengono riportate, con apposito simbolo grafico, le fasce di rispetto del Reticolo Idrico inerente il territorio comunale di Calvisano. Per le attività vietate e/o consentite all'interno di tali fasce, previa autorizzazione da parte del **Comune**, si rimanda all'applicazione degli articoli specifici del Piano delle Regole del P.G.T. vigente.

Infine si ricorda che per tutte le classi di fattibilità così come precedentemente indicato, viste le risultanze delle indagini sismiche effettuate e descritte nel capitolo 4 si ritiene opportuno, in fase di progettazione di nuove costruzioni / ristrutturazioni edilizie (intese in senso lato comprendente quindi sia ristrutturazioni edilizie che manutenzioni straordinarie qualora queste comportino variazioni

strutturali al fabbricato in esame) sottoporre le verifiche di Vs30 e relativa categoria di sottosuolo effettuate in applicazione delle NTC08, alla procedura di II livello sismico ai sensi dell'Allegato 5 della DGR IX/2616/11, la cui metodologia si fonda sull'analisi di indagini dirette e prove sperimentali effettuate su alcune aree campione della Regione Lombardia ed i cui risultati sono contenuti in uno "Studio Pilota" redatto dal Politecnico di Milano - Dipartimento di Ingegneria Strutturale in convenzione con la Regione Lombardia qui di seguito indicato:

✓ F. Pergalani - M. Compagnoni - V. Petrini: "Analisi e valutazione degli effetti sismici di sito in Lombardia finalizzate alla definizione dell'aspetto sismico nei Piani di Governo del Territorio"; Milano Novembre 2005.

7. CONSIDERAZIONI CONCLUSIVE

Su incarico dell'Amministrazione Comunale (determina del Responsabile Area Tecnica - settore edilizia privata n. 21 del 22/12/2015 e n 24 del 04/08/2016) di Calvisano (BS) è stato realizzato il presente aggiornamento della componente geologica, idrogeologica e sismica del PGT comunale, aggiornamento effettuato nell'ambito della variante generale del PGT in questione e realizzato ai sensi della D.G.R. IX/2616/11 "Aggiornamento dei "Criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio, in attuazione dell'art. 57, comma 1, della l.r. 11 marzo 2005, n. 12, approvati con d.g.r. 27 dicembre 2015, n. 8/1566 e successivamente modificati con d.g.r. 28 maggio 2008, n. 8/7374", pubblicato sul BURL n. 50 Serie ordinaria del 15 dicembre 2012".

Tenuto conto che il Comune di Calvisano disponeva già di uno studio geologico comunale, realizzato nell'ambito della prima stesura del Piano di Governo del Territorio comunale (Giugno 2008) con il presente aggiornamento si è provveduto ad unformare la componente geologica, idrogeologica e sismica alle diverse disposizioni sopravvenute nel frattempo sia a livello regionale, a scala di bacino idrografico ed a livello nazionale.

Pertanto per ottemperare correttamente a quanto precedentemente indicato e stante la situazione del quadro geologico del territorio comunale di Calvisano, si è proceduto in una prima fase alla:

- 4. Raccolta di studi e indagini pregresse a disposizione dell'Ufficio Tecnico Comunale di Calvisano, mediante la cernita e la selezione delle tipologie di indagini geognostiche e geofisiche presenti nelle relazioni geologiche e geotecniche realizzate nell'ambito della progettazione di opere pubbliche e/o di interventi di edilizia privata, di seguito raccolte e catalogate nell'Allegato 1: "Indagini geognostiche e geofisiche pregresse" oltre che puntualmente riportate nella Tav. 01: "Carta geologica e geomorfologica del territorio comunale (scala 1:10.000)".
- 5. Raccolta e selezione delle informazioni relative ai numerosi pozzi privati (ubicazione, stratigrafie, ecc.) presenti sul territorio comunale e disponibili dalla consultazione del "database Tangram" dell'Università Milano Bicocca (Dipartimento di Scienze dell'Ambiente e del Territorio) e del IDPA CNR (Istituto per la Dinamica dei Processi Ambientali) di Milano, raccolti e catalogati nell'Allegato 2: "Stratigrafie pozzi "da Tangram database per pozzi". Inoltre il dato di profondità relativo alla stratigrafia dei pozzi individuati ha consentito la stesura di quattro sezioni stratigrafiche (due sezioni orientate E-W e due sezioni orientate N-S) rivelatesi di fondamentale importanza ai fini della valutazione della geologia dell'area in esame e riportate nella Tav. 02: "Sezioni geologiche (scale varie)".
- 6. Verifica per l'areale in esame della documentazione presente nello studio "Modello geologico 3D e geopotenziali della Pianura Padana centrale (Area Pilota Italiana del Progetto GeoMol)", rivelatosi

particolarmente significativo soprattutto per l'<u>approfondimento degli aspetti relativi alla caratterizzazione</u> sismogenetica delle faglie capaci della Pianura Padana.

I dati così raccolti hanno permesso di poter procedere ad un primo aggiornamento delle cartografie di inquadramento e di analisi del territorio comunale nonché alla stesura ex novo di sezioni geologiche di dettaglio dell'areale del territorio comunale permettendo la stesura della:

- > <u>Tav. 01: "Carta geologica geomorfologica del territorio comunale" (scala 1:10.000);</u> aggiornamento 2017.
- Tav. 02: "Sezioni geologiche" (scale varie 1:10.000); aggiornamento 2017.
- > <u>Tav.03: "Carta Idrogeologica e della vulnerabilità della falda del territorio comunale (scala 1:10.000)</u>; aggiornamento 2017.

A seguito di questa prima fase di attività si è dato corso alla realizzazione di una:

- 3. Campagna di indagini geofisiche di tipo MASW con la realizzazione di 18 stendimenti sismici ubicati sul territorio comunale di Calvisano, concentrando la loro localizzazione lungo il perimetro (o dove possibile, internamento allo stesso) dei principali centri abitati. Tale campagna ha permesso di implementare il "dato sismico" d'ingresso, derivante dalle informazioni dello studio geologico esistente ed è stato finalizzato oltre che all'aggiornamento / adeguamento della Carta della Pericolosità Sismica Locale del precedente studio geologico sopracitato anche all'implementazione del dato puntuale relativo al II° livello dell'Allegato 5 della D.G.R. IX/2616/2011 mediante la verifica del Fattore di Amplificazione (Fa) sitospecifico. Tutti i report analitici relativi agli stendimenti realizzati sono stati raccolti e catalogati nell'Allegato 3: "Raccolta report illustrativi della campagna di indagini geofisiche", all'interno del quale si trovano anche le corrispondenze lungo lo stendimento d'indagine con il rispetto delle categorie di sottosuolo delle NTC08.
- 4. Valutazione delle problematiche di rischio idrogeologico ed idraulico cosi come riportate nell'ambito del PGRA (Piano di Gestione Rischio Alluvioni) con particolare attenzione alle indicazioni relative all' ARS RL25 "Ghedi, Calvisano Torrente Garza" mentre a livello di prescrizioni geologiche comunali si sono introdotte le indicazioni derivanti dalla Legge Regionale 15 marzo 2016, n. 4 "Revisione della normativa regionale in materia di difesa del suolo, di prevenzione e mitigazione del rischio idrogeologico e di gestione dei corsi d'acqua" in merito all'invarianza idraulica delle trasformazioni urbanistiche.

In conseguenza di quanto sopraddetto si è quindi proceduto all'aggiornamento ed alla stesura della:

> <u>Tav. 04: "Carta della pericolosità sismica locale di I° livello del territorio comunale (scala 1:10.000)"</u>; aggiornamento 2017.

- > <u>Tav. 05: "Carta dei Vincoli di natura geologica del territorio comunale (scala 1:10.000)";</u> aggiornamento 2017.
- > <u>Tav.06: "Carta di Sintesi del territorio comunale (scala 1:10.000)"</u>; aggiornamento 2017.
- > <u>Tav. 07: "Carta della Fattibilità Geologica per le azioni di Piano (Foglio 07a: Calvisano Nord e foglio 07b: Calvisano Sud scala 1:5.000)"</u>; aggiornamento 2017.
- > Relazione Geologica Generale con aggiornamento delle Norme e prescrizioni geologiche di Piano.

Pisogne, gennaio 2017

Dott. Geol. Alessandro Schiepatti

AJESSANDBO

Dott. Geol. Fabio Fenaroli

